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Brain activity links performance in science reasoning with
conceptual approach
Jessica E. Bartley 1, Michael C. Riedel 1, Taylor Salo 2, Emily R. Boeving2, Katherine L. Bottenhorn 2, Elsa I. Bravo2,
Rosalie Odean 2, Alina Nazareth3, Robert W. Laird1, Matthew T. Sutherland 2, Shannon M. Pruden2, Eric Brewe4,5,6 and
Angela R. Laird 1*

Understanding how students learn is crucial for helping them succeed. We examined brain function in 107 undergraduate students
during a task known to be challenging for many students—physics problem solving—to characterize the underlying neural
mechanisms and determine how these support comprehension and proficiency. Further, we applied module analysis to response
distributions, defining groups of students who answered by using similar physics conceptions, and probed for brain differences
linked with different conceptual approaches. We found that integrated executive, attentional, visual motion, and default mode
brain systems cooperate to achieve sequential and sustained physics-related cognition. While accuracy alone did not predict brain
function, dissociable brain patterns were observed when students solved problems by using different physics conceptions, and
increased success was linked to conceptual coherence. Our analyses demonstrate that episodic associations and control processes
operate in tandem to support physics reasoning, offering potential insight to support student learning.
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INTRODUCTION
New innovations in transforming science education to promote
success and broaden participation require an understanding of
how students learn. Evidence has shown that learning interven-
tions, both long and short term, can be accompanied by lasting,
content-related brain changes, suggesting that classroom instruc-
tion may influence the measurable neural processes by which
students consolidate, access, or store information.1,2 Physics in
particular can be a challenging discipline for many students as it
requires both a conceptual understanding and recall of physical
principles, along with acquisition of procedural skills for solving
problems. Neuroimaging studies on physics learning indicate that
cognition about physical concepts (e.g., velocity, acceleration, and
force) is encoded into specific neural representations,3 and these
representations may change during progressive stages of physics
learning.4 Moreover, problem solving is known to engage an
extensive frontoparietal central executive network (CEN), both
generally across domains of knowledge5 and specifically regard-
ing physics concepts.6 Collectively, these findings highlight a
putatively influential role science learning may have on functional
brain architecture and underscore the complexity of neural
processes linked with proficiency in physics problem solving.
Insight into the scientific learning process may be gained by

considering the obstacles students encounter. A wealth of
cognitive science and education research has identified consistent
patterns in how students think about physics, with a preponder-
ance of studies focusing on difficulties mastering Newtonian
mechanics.7–9 Physics students consistently struggle to learn key
concepts and novice students are known to invoke intuitive but
incorrect ideas of physical causality when solving problems.10,11

These misleading conceptions frequently interfere with a student’s
ability to successfully acquire new physics knowledge,12 and a
broad, but sometimes conflicting, body of literature has

attempted to characterize these ideas to support conceptual
change across instruction.13–17 One model posits that these so-
called “folk physics” notions18,19 may be implicitly linked to
associative memory, with naive reasoning arising from context-
based extrapolations of remembered personal experiences.20

Another describes students’ reasoning as being based on
common sense, but weakly organized, physical intuitions.21 Yet
another view argues that ontological differences in the way
students think about physical processes impact how persistent
incorrect conceptions are across instruction.14 A contrasting
opinion holds that students use ontological categories dynami-
cally, and that the range of physics reasoning processes may be
better explained by varying levels of coherence (integration of
concepts) and robustness (applicability across contexts) in how
students build patterns of associations between their existing
cognitive resources (e.g., memories, beliefs, and facts).15,22 Despite
these many models, little is known about the underlying neural
processes of how students access, deploy, and attempt to resolve
physics conceptions during reasoning. The limited work that has
been done on this topic indicates that the anterior cingulate
cortex (ACC) may be engaged when students view physically
causal scenes that conflict with their strongly held intuitions.23 In
addition, episodic, associative, and spatial recall are known to be
supported by hippocampal and retrosplenial cortex (RSC)
activity,24,25 and reasoning processes are linked with the
dorsolateral prefrontal (dlPFC) and posterior parietal cortex (PPC)
activity.5 However, no prior work has identified the specific neural
processes that underlie physics reasoning nor any neurobiological
differences associated with students different use of incorrect
physics conceptions. Such an understanding would inform
existing behavioral models and might help us more fully
understand how students learn physics.
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We acquired functional magnetic resonance imaging (fMRI)
data from 107 undergraduate students after the conclusion of a
semester of university-level physics instruction. During fMRI,
students were presented with questions adapted from the force
concept inventory (FCI),26 a widely adopted test of conceptual
problem solving that presents scenarios of objects at rest or in
motion and asks students to choose between a Newtonian
solution and several reasonable non-Newtonian alternatives, each
of which mirror common confusions. Physics and baseline
perceptual questions (Supplementary Fig. 1) were presented as
blocks composed of three sequential view screens (e.g., “phases”):
problem initiation in which students viewed text and a figure
describing a physical scenario (Phase I), question presentation in
which the students viewed a physics question about the scenario
(Phase II), and answer selection wherein four possible answer
choices were displayed for selection (Phase III). Brain activity
across full questions (all phases), as well as within each phase, was
assessed. We then explored putative links between the neural
substrates of physics problem solving and accuracy, difficulty,
strategy, and student conceptualization of physics ideas. First, we
probed for brain-behavior correlations revealed by parametric
modulation of the BOLD signal in independent meta-analytically
defined a priori reasoning and memory-linked regions of interest
(ROIs; Supplementary Fig. 2) located in the left dlPFC, ACC, left
PPC, left hippocampus, and RSC, and across the whole brain.
Second, because student response patterns across FCI questions
are heterogeneous, and even incorrect answer choices provide
meaningful information about students’ conceptions,27 we
distinguished subtypes of “physics thinkers” based on their FCI
answer choices. Specifically, we applied community detection to
FCI answer distributions to identify subgroups of similarly
responding students and contrasted brain activity between
groups to examine differential ways of thinking about the
behavior of physical phenomena.

RESULTS
Physics problem solving engages visual motion, central executive,
and default mode processes
FCI responses (mean accuracy= 61%, mean response time (RT)=
20.2 s) were consistent with previous reports27,28 and significantly
differed (p < 0.001) from control responses (mean accuracy= 98%,
mean RT= 15.8 s), suggesting overall task compliance. Maps of
FCI > Control blocks revealed activation across a fronto-temporo-
parietal network, including the prefrontal cortex (PFC), left dorsal
striatum, PPC, RSC, and dorsal posterior cingulate cortex, lateral
occipitotemporal cortex (V5/MT+), and cerebellum (Fig. 1a;
Supplementary Table 1). To tease apart constituent neural
processes, we analyzed sequential phases of the problem-
solving process and observed multiple dissociable whole-brain
networks linked with problem initiation (Phase I), question
presentation (Phase II), and answer selection (Phase III). Phase I
was associated with a similar activity pattern as the FCI > Control
contrast, Phase II maps were characterized by right-emphasized
dorsal posterior parietal and V5/MT+ engagement, and Phase III
maps included medial, anterior, and posterior nodes of the default
mode network (DMN; Fig. 1b–d; Supplementary Table 2). These
network transitions from fronto-temporo-parietal (Phase I) to
dorsal attention (DAN; Phase II) followed by default mode
cooperation (Phase III) point to the potentially important role
V5–DMN–CEN interactions may have within physics reasoning
processes. Meta-analytic functional decoding, which is a technique
used to provide data-driven inferences about which mental
functions are likely associated with specific brain activation
patterns (see SI for more details), was performed on the resulting
unthresholded z-statistic maps by using Neurosynth,29 indicating
that terms for switching, default, motion, and reasoning were
associated with physics problem solving (Fig. 1 radar plots;
Supplementary Table 3).

Fig. 1 Physics problem solving-related brain activity. Activation of FCI > Control for a problem solving across all phases, b–d across each
sequential problem phase, and e parametric modulation across all phases by problem difficulty. Activation maps were thresholded by using a
cluster-defining threshold of P < 0.001 and a cluster extent threshold of P < 0.05, FWE corrected. Adjacent radar plots depict functional
decoding results of the top ten weighted terms for each network. Note that term weightings depend on the values of each input map; thus,
each radar plot depicts an arbitrary scale and comparison of values across plots is not recommended29
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Decoding sequential phases indicated that problem initiation
may reflect visuospatial attention, perceptual/motor, and memory
retrieval; question presentation was associated with switching,
visual short-term memory, and numbers, and answer selection
was linked to DMN-related terms (e.g., unconstrained (free),
mentalizing, and ambiguous), consistent with mental exploration
of a solution. Next, to assess information exchange across GLM-
identified regions during problem solving, we performed task-
based functional connectivity (FC) analyses for three seeds
centered on peaks of the overall FCI > Control map located in
the left V5/MT+, the left dlPFC, and the RSC. Psychophysiological
interaction (PPI) results (Fig. 2; Supplementary Table 4) revealed
greater physics problem solving-related coupling (relative to
control conditions) of the left V5/MT+ with DAN brain areas, the
left dlPFC with V5/MT+ and DMN areas, and the RSC with
frontoparietal, DMN, and salience network (SN) regions. These
outcomes suggest that complex visual information may be carried
through a dorsal stream to frontoparietal regions that direct
CEN–DMN network exchanges during physics reasoning.

Difficulty, but not accuracy and strategy, modulate brain activity
during problem solving
To relate brain function to behavioral measures impacting student
success, we tested our hypotheses that activity in meta-
analytically derived ROIs (e.g., left dlPFC, left PPC, ACC, left
hippocampus, and RSC) would be parametrically modulated by
student-reported strategy and normative problem difficulty,30 but
not answer accuracy. While no significant BOLD signal modula-
tions were observed in these a priori ROIs, an exploratory whole-
brain parametric modulation analysis revealed that DAN and
occipital activity were positively modulated by problem difficulty
(Fig. 1e; Supplementary Table 5). This indicates that the network
associated with physics reasoning is consistently activated,
regardless of whether or not a correct answer is achieved, and
does not reflect students’ perception of their reasoning strategy.
Importantly, the most salient relation appears to be between the
degree of difficulty and engagement of brain regions linked with
visuospatial perceptual, memory, and attentional processes, as
assessed by functional decoding (Fig. 1e right).

Students demonstrate dissociable brain activity linked to
knowledge fragmentation
We next performed module analysis31 on students’ answer
patterns to probe potential relationships between brain activity
and students’ conceptual coherence (i.e., integration of physics
knowledge)22 and to assess if distinct reasoning profiles were
rooted in the underlying functional brain differences. We analyzed
answer distributions by using a community detection algorithm32

to parse student subgroups who provided similar responses across
FCI questions. Percent overlap was assessed between answers
provided by each group and previously identified “conceptual
modules” present in the FCI test31 (Supplementary Table 6).
Conceptual modules are communities of incorrect FCI answer
choices that are usually selected together. They represent
students’ dissociable non-Newtonian (incorrect) notions about
physical phenomena, some of which demonstrate a high degree
of conceptual coherence, while others are more suggestive of a
fragmented collection of physics ideas.21,31,33 The set of con-
ceptual modules selected by a group (their reasoning profile)
represents distinguishable arrangements of student’s (mis)inter-
pretations and confusions about the physical world. Module
analysis detected 13 student groups across 107 students who
answered similarly to each other during FCI problem solving with
a modularity of Q= 0.53 (Fig. 3a). Four groups had ten or more
members (i.e., normative groups). ANOVA indicated a significant
difference in mean framewise displacement (FD) head motion
between groups or one or more of the groups (F(3, 178)= 8.213,
p≪ 0.001). Post hoc multiple comparison Tukey HSD tests
indicated that students in Group D showed to significantly greater
head motion (p < 0.05). The three remaining in the normative
groups had no significant differences of in-scanner head motion
and were thus selected for further analysis. The remaining three
groups’ answer distributions were characterized based on
prevalence of conceptual modules (Fig. 3b). These groups,
composed of 24, 17, and 10 students, were carried into group-
level neuroimaging analyses to assess brain activity and con-
nectivity differences during problem solving.
Group A (n= 24) achieved an accuracy rate of 77% across all FCI

questions, indicative of being highly Newtonian thinkers.27 Of the
non-Newtonian responses provided by this group, incorrect
answers almost exclusively aligned with a common naive physics

Fig. 2 Psychophysiological interaction (PPI) results. Whole-brain PPI task-based functional connectivity associated with FCI > Control for a left
V5/MT+, b left dlPFC, and c RSC seeds. PPI maps were thresholded by using a cluster-defining threshold of P < 0.001 and a cluster extent
threshold of P < 0.05, FWE corrected
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idea known as the “impetus force” (m1, Fig. 3b top), which is the
incorrect belief that moving objects experience a propelling force.
Group B (n= 17) achieved an accuracy rate of 73% across all FCI
questions, which is also indicative of high Newtonian thinking. The
reasoning profile for Group B (Fig. 3b middle) indicated that
students gave incorrect answers by either falling victim to the
impetus force fallacy (m1) or to another common, but less coherent

set of physics conceptions that we term the “confusion about
gravitational action” module (m9). Group C (n= 10) achieved an
accuracy rate of 53% across all FCI questions, indicative of non-
Newtonian thinking. The reasoning profile for Group C (Fig. 3b
bottom) indicated that students’ incorrect answers were primarily
associated with five conceptual modules that each occurred at
relatively similar rates: the “impetus force” module (m1), “more force

Fig. 3 Inhomogeneity in students’ conceptual approach. a Module analysis of student responses across FCI answer distributions. Heat map
colors represent student responses to multiple-choice FCI questions and black horizontal lines distinguish groups identified by community
detection. b Scaled within-group overlap of incorrect FCI responses across nine previously measured physics conceptual models31

(Supplementary Table 6) for top three normative groups. c Group differences in problem solving-related brain networks (FCI > Control, all
phases) across the three normative groups. Increased activity is shown for Groups A and B relative to Group C (top) and Group C relative to
Groups A and B (bottom). No significant differences were observed between Groups A and B. Group difference maps were thresholded by
using a cluster-defining threshold of P < 0.001 and a cluster extent threshold of P < 0.05, FWE corrected
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yields more result” module (m2), “confusion relating speed and path”
module (m5), “sudden forces induce instantaneous path change”
module (m6), and “an object’s mass determines how it falls” module
(m7).
We performed a whole-brain, one-way ANOVA to identify

between-group differences in physics-related brain activity (FCI >
Control, all phases). Omnibus results indicated that one or more
subgroups showed significantly different brain activity during
problem solving. Post hoc tests were performed across each
combination of group pairs (Fig. 3c; Supplementary Table 7).
Group A (vs. C) students demonstrated greater activity during
problem solving in the left lateral orbitofrontal cortex (lOFC) as
well as in the left inferior parietal lobule, bilateral V5/MT+, and
right cerebellum. Group B (vs. C) students also exhibited greater
activity in the left lOFC. Group C (vs. both A and B) students
showed greater activity in the cuneus extending into the lingual
gyri. In addition, Group C students also showed increased activity
relative to Group A in the caudal medial frontal gyrus, ACC,
bilateral precentral and postcentral gyri along the precentral
sulcus, bilateral anterior insular cortex (aIC), and left superior
temporal gyrus. Overall, the student who answered by using more
coherent physics conceptions, even if incorrect, showed increased
reliance on a lOFC-V5/MT+ network, whereas students who held
less consistent ideas involving multiple conceptual approaches
showed increased primary visual and SN activity. One possible
interpretation of these differences may be that in the absence of
stable and coordinated physics conceptions, students engage
relatively more visual search processes for salient problem
features.

DISCUSSION
Our fMRI results suggest that when students solve physics
problems, they activate a network of bilateral dlPFC, left lOFC,
PPC, RSC, and V5/MT+ areas, consistent with previous CEN-
supported problem-solving findings across knowledge domains.5

Yet, V5/MT+ and RSC involvement with the CEN appear to be a
feature of physics problem solving in particular. Both areas
support visuospatial information processing,34 with the bilateral
V5/MT+ system being linked to visual motion processing
including imagining implied motion and maintaining motion
information in working memory,35–37 and RSC supporting spatial
cognition and episodic memory retrieval, especially when
imagined scenes are mentally transformed between specific
viewpoints.24 Thus, these regions may aid in the mental imagery
of motion, as informed by remembered physical scenarios, and
build internal representations of physical systems, which is
considered an essential step in physics solution generation.38

Shifts in physics-related brain activity across problem phases
indicate reliance on memory-linked associations. We find that V5/
MT+, CEN, DAN, and DMN transitions support sequential problem-
solving phases. Notably, answer generation elicited concurrent
DMN, lateral fronto-parietal, and V5/MT+ activity. Interestingly,
while CEN-supported tasks often evoke DMN deactivations, this
DMN–CEN coherence likely indicates reliance on episodic and
semantic memory retrieval processes39,40 during physics cogni-
tion, a notion consistent with the constructivist theory of
learning.41 In addition, the PCC is functionally heterogeneous,
connecting DMN and fronto-parietal networks, and serving as a
possible hub across brain systems to direct attentional focus.42

Further, the FCI is differentiated from other fMRI tasks by its
relatively long trials, requiring sustained cognition to generate
answers. The DMN may thus be activated along with the CEN to
allow for mental exploration necessary in solution derivation.
Problem solving-related brain activity was shown to differ based

on how students think, not how correct they are. We found that
students’ problem solving-related brain function cannot be
categorized by simply considering their “incorrect” versus “correct”

answers. Rather, module analysis indicates that variance in
conceptual approach better characterizes brain differences, which
in turn impacts success rate. An existing framework of learning
conceptualizes physics cognition as relying on dual “knowledge
structure” and “control structure” processes.22 Under this model,
students apply executive functions to select or inhibit associa-
tional patterns that ground how they describe the physical world.
Here, associational patterns, known as knowledge structures, are
conceptualized as flexible, contextually primed collections of
linked knowledge elements called “resources” that students
activate to scaffold reasoning. Ideally, students learn to activate
stable associations between physical laws, enabling long deduc-
tive chains to be carried out during problem solving. However,
when this does not occur, student’s non-Newtonian processes can
vary: strongly associated yet inappropriate resources may stably
activate across contexts, or more basic, axiomatic physical beliefs
(e.g., intuitive notions such as closer is stronger or more effort gives
more result)21 may form weak, unstable links that do not support
ancillary deductive elaboration. These differences are described
along an axis of “compilation” or memory chunking. Students
without precompiled knowledge structures require additional
cognitive resources to assemble associations during reasoning,
whereas physics experts can access well-developed associational
patterns that do not need to be actively assembled during
problem solving.
We adopt this resource framework to interpret brain function

with the goal of relating neuroimaging findings to educational
knowledge and practice. Physics-related CEN and DAN activations
were linked to varied cognitive terms consistent with the idea of a
control structure, and DMN involvement during reasoning may
reflect associational mappings within semantic or episodic
memory circuits.39,40 Thus, dlPFC–RSC FC may support the idea
that control processes guide knowledge structure selection. Under
this interpretation, reasoning subgroups may be thought of as
differentiated by knowledge structure use. Groups A and B applied
predominantly Newtonian (i.e., compiled) thinking, but Group C
was less consistent in their approach. Of the non-Newtonian
modules activated, Group A consistently used an arguably
concrete impetus model, Group B applied an impetus model while
also expressing confusion about gravitational action, and Group C
utilized multiple modules characterized by simple, vague, or
confused ideas that differed across problems. We argue that these
groups can be described along a continuum of knowledge
compilation, coherence, and robustness. Groups A, and to a lesser
extent, B demonstrated stable, strongly associated knowledge
structures, whereas Group C showed more labile associational
patterns that were limited by problem context. In this manner, less
coherent, more variable knowledge structures were associated
with increased primary visual and SN activity, whereas precom-
piled, stable reasoning strategies more strongly activated lOFC
and V5/MT+, areas implicated by physics thinking in the CEN.
These findings suggest that chunked knowledge can reduce
working memory demands, allowing for increased focus on other
control structure aspects of problem solving.22 However, when
students continually reidentify associational patterns across
problems, they may rely more heavily on visually guided SN
activity to select which problem features deserve their attention.43

A fundamental goal of educational neuroscience is to bridge
understanding of brain function with the insights, findings, and
models of education research. Under a resource framework, our
results suggest that physics students struggle most when they do
not understand how to choose appropriate and coherently
chunked resources from long-term memory, thus relying on
increased SN activity during problem solving. Learning obstacles
also occur when students access compiled but nonphysical
conceptions during reasoning, allowing for increased CEN brain
function linked to control processes. While the latter still
represents a type of incorrect physics thinking, it more closely
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resembles the kind of cognition instructors aim to teach.22 As
others have pointed out,44 it is a long path between brain imaging
and the potential development of lesson plans, yet these insights
may begin to inform aspects of physics classroom practice:
instruction that explicitly attends to how students select, link, and
reorganize resources may be critical in developing appropriately
compiled knowledge to map back onto control processes.22

Learning physics is complex, yet a disproportionate focus is often
placed on whether students answer questions correctly. Our
results suggest that the conceptual foundations of wrong answers
are accompanied by functional brain differences during reasoning
and can reveal much more about student’s ability to succeed than
simple measures of accuracy. A focus on accuracy alone
oversimplifies the complex processes engaged during physics
reasoning. Instructors that leverage (rather than ignore or attempt
to simply overwrite) students’ incorrect conceptions to facilitate
conceptual change and transition-existing resources about
physical phenomena into stable and accessible knowledge
structures may better serve students in connecting what they
believe with what they predict.
In sum, we find that the neural mechanisms underlying

conceptual physics problem solving are characterized by inte-
grated visual motion, central executive, attentional, and default
mode brain systems, with solution generation relying on critical
DMN–CEN engagement during reasoning. Furthermore, we
explored whether measures of student success show underlying
neurobiological bases, finding that students’ physics conceptions
manifest as brain differences along an axis of relative knowledge
fragmentation and robustness. Critically, accuracy alone did not
predict brain function, but students achieved increased success
when they made use of stable, strongly associated knowledge
structures. We acknowledge that our results may be specific to the
FCI questions used here, that additional or varied brain dynamics
may be more relevant for different kinds of physics problem
solving, and that sample sizes across Groups A–C, are relatively
small and uneven. Despite these concerns, we are confident that
our findings serve to deepen understanding into how students
learn. Together, our results demonstrate that associational and
control processes operate in tandem to support physics problem
solving and offer potential educational insight toward promoting
student success.

METHODS
Participants
One hundred and seven healthy right-handed undergraduate students
(age 18–25 years; 48 women) enrolled in introductory calculus-based
physics at Florida International University (FIU) took part in this study. MRI
data were acquired no more than 2 weeks after the end of the academic
semester. Written informed consent was obtained in accordance with FIU
Institutional Review Board approval.

FCI task
The Force Concept Inventory, a widely used45 and reliable46 test of
conceptual understanding in Newtonian physics,26 which includes a series
of questions about physical scenarios, was adapted for the MRI
environment. FCI questions do not require mathematical calculation;
rather they force students to choose between a correct answer and
multiple common sense alternatives. The task included three phases:
participants viewed a figure and descriptive text presenting a physical
scenario (Phase I), a physics question was presented (Phase II), and
participants viewed four possible answers and were instructed to choose
the correct answer and mentally justify why their solution made the most
sense (Phase III). Participants provided a self-paced button press to
advance between phases and provide their final answer; a fixation cross
was shown after answer selection before presentation of the next scenario.
Question blocks were of maximum duration 45 s and were followed by a
fixation cross of minimum duration 10 s. Control questions presented
everyday physical scenarios and queried students on general reading

comprehension instead of physics content. Control questions also included
three phases (Control I, Control II, and Control III) to match the
presentation of FCI questions. Post-scan debriefing included a paper-
based questionnaire in which students rated the degree to which they had
used “knowledge and reasoning” or had relied on a “gut feeling” to solve
each FCI question.

fMRI acquisition and preprocessing
Functional images were acquired with an interleaved gradient-echo, echo
planar imaging sequence (TR/TE= 2000/30ms, flip angle= 75°, FOV=
220 × 220mm, matrix size= 64 × 64, and voxel dimensions= 3.4 × 3.4 ×
3.4 mm, 42 axial oblique slices). A T1-weighted series was acquired by
using a 3D fast spoiled gradient recall brain volume (FSPGR BRAVO)
sequence with 186 contiguous sagittal slices (TI= 650ms, bandwidth=
25.0 kHz, flip angle= 12°, FOV= 256 × 256mm, and slice thickness=
1.0 mm). Preprocessing was performed by using FSL (www.fmrib.ox.ac.uk/
fsl) and AFNI software libraries. Anatomical and functional images were
skull stripped, the first five frames of each functional run were discarded,
rigid-body motion correction was performed, functional images were high-
pass filtered (110 s), and a 12-degree-of-freedom affine transformation was
applied to co-register the series with each structural volume. Nonlinear
resampling was applied to transform all images into MNI152 space, and
functional volumes were spatially smoothed by using a 5-mm Gaussian
kernel. All motion-corrected non-registered 4D data underwent visual
inspection, and TRs associated with visually identified motion artifacts
were flagged for exclusion and their corresponding FD values were
recorded. The minimum of the distribution of these artifact-linked FDs was
used as a common scrubbing threshold across subjects during analyses.
TRs with excessive motion (including one frame before and two frames
after) were censored out during the GLM analysis if they met or exceeded a
threshold of 0.35-mm FD.47 Runs containing excessive motion (≥33% of
within-block motion) were discarded from the analysis, resulting in the
omission of three runs from two individuals. Six motion parameters
(translations and rotations) were included as nuisance regressors in all
analyses.

General linear model analyses
Stimulus-timing files were created for each participant based on question
phase onset/offset times. FCI and control questions were modeled as
blocks from question onset to the onset of a concluding fixation cross
triggered by answer selection. The contrast FCI > Control was modeled
across full question duration; three additional GLM analyses were
performed for the individual phases. Timing files were convolved with a
hemodynamic response function, and the first temporal derivatives of each
convolved regressor were included to account for any offset in peak BOLD
response. General linear modeling for within- and between-subject
analyses was performed in FSL by using FEAT. Group-level activation
maps for all contrasts were thresholded with a cluster-defining threshold
(CDT) of P < 0.001 and a cluster extent threshold (CET) of P < 0.05
(FWE corr).

Task-based functional connectivity analysis
We tested for PPI associated with the FCI task across three seeds centered
on peaks from the overall FCI > Control map located in the left V5/MT+ ,
left dlPFC, and RSC. ROIs were transformed into native space, and time
series were extracted from unsmoothed data and included as regressors in
separate within-subject PPI analyses performed on spatially smoothed 4D
data sets. Design matrices for the within-subject PPI analyses contained
regressors for the ROI time series, the condition difference vector modeling
the differences between FCI and Control timing files, a vector representing
the sum of the FCI and Control conditions, and the interaction between the
task difference vector and ROI time series. The interaction term was
calculated by zero-centering the task explanatory variable, and the mean
of the ROI time series was set to zero. All task and interaction regressors,
but not the ROI time series, were convolved with a Gamma-modeled
hemodynamic response. PPI analyses were carried out separately for each
ROI, and the resultant beta maps were averaged within-subject and carried
into three separate group-level analyses. ROI-to-voxel task-based func-
tional connectivity analyses were thresholded at a significance of P < 0.001
CDT, P < 0.05 CET (FWE corr).
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Brain-behavior correlates
Separate within-subject parametric modulation analyses were performed
for accuracy, difficulty, and self-reported problem-solving strategy. Design
matrices were identical to GLM analyses but included a single parametric
modulator with the same FCI question timing but with a regressor height
modeled by differences in the behavioral measures. Accuracy was
modeled with regressor heights of 1, 0, or −1 corresponding to correct,
no response, or incorrect answer provided. Difficulty was measured as a
normative miss rate per FCI question, as measured externally.30 Problem-
solving strategy was measured on a Likert scale by a post-scan
questionnaire. If any parametric modulator had zero variance within a
run (i.e., the student reported using an identical strategy for all questions)
then the run was discarded to avoid rank deficiency in the design matrix.
The resulting beta maps were then averaged across within-subject runs.
Brain-behavior correlations were tested via two separate analyses: we
extracted within-subject parametric modulator beta values within five
hypothesis-driven ROIs and conducted one sample, two-sided t tests on
the beta distributions for significant variations from baseline (Supplemen-
tary Fig. 3). Group-level analyses were also performed with whole-brain
beta maps resulting from the parametric modulation GLMs to determine if
significant network-level activity was present during problem solving
associated with the behavioral measures.

Student response profiles
Given evidence indicating student responses to the FCI, which provide
insight into how students think about physics problems,31 we performed a
module analysis of the observed FCI answer distributions to identify
student response profiles. The data were treated as a bipartite matrix of
Students × Responses. This bipartite matrix was computed and then
projected into a weighted adjacency matrix of students, A=MMT, where M
is the bipartite matrix. Each element in A represents the count of how
many times one student agreed with any other student (values from 0 to 9,
for 9 questions). Next, we performed nonparametric sparsification48 on A
to identify the backbone of the graph. Backboning identifies important
links within a network and reduces the number of spurious links. A
significance value was computed for each edge weight and the edge
weights were thresholded at P < 0.01. We performed community detection
(InfoMapR32) on the backbone network to identify subgroups of students
who provided similar responses to the FCI prompts. We assessed the
scaled within-group overlap of incorrect FCI responses across a set of nine
previously measured physics modules consisting of jointly selected
incorrect FCI response items31 (Supplementary Table 6). Each group’s
relative conceptual module representation was scaled by group size to
allow for comparisons across groups of different sizes. Alignment with
conceptual modules indicates that students draw on specific non-
Newtonian physics conceptions. Finally, we tested for network differences
across student groups. An omnibus test was conducted for the FCI >
Control contrast as well as for the three whole-brain PPI maps. Significant
F-test results were further interrogated with post hoc t tests across groups.
Maps were thresholded at P < 0.001 CDT, P < 0.05 CET (FWE corr).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Archives of behavioral data and statistical models used in this study, including the e-
Prime stimulus files and module analysis files, can be accessed in the GitHub
repository. Statistical brain volumes resulting from neuroimaging analyses are
available at https://neurovault.org/collections/4758/.

CODE AVAILABILITY
A public GitHub repository was created at https://github.com/NBCLab/
PhysicsLearning/tree/master/FCI to archive the analysis- processing scripts and
custom code used in this study. FMRI data processing and analysis were carried out
by using FEAT Version 5.0.7, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.
uk/fsl). Analyses on behavioral (e.g., non-fMRI) data were performed in R version 3.4
and Python 2.7.

Received: 15 October 2018; Accepted: 21 October 2019;

REFERENCES
1. van Kesteren, M. T. R., Rijpkema, M., Ruiter, D. J., Morris, R. G. M. & Fernández, G.

Building on prior knowledge: schema-dependent encoding processes relate to
academic performance. J. Cogn. Neurosci. 26, 2250–2261 (2014).

2. Mackey, A. P., Miller Singley, A. T. & Bunge, S. A. Intensive reasoning training alters
patterns of brain connectivity at rest. J. Neurosci. 33, 4796–4803 (2013).

3. Mason, R. A. & Just, M. A. Neural representations of physics concepts. Psychol. Sci.
27, 904–913 (2016).

4. Mason, R. A. & Just, M. A. Physics instruction induces changes in neural knowl-
edge representation during successive stages of learning. Neuroimage 111,
36–48 (2015).

5. Bartley, J. E. et al. Meta-analytic evidence for a core problem solving network
across multiple representational domains. Neurosci. Biobehav. Rev. 92, 318–337
(2018).

6. Riekki, T., Salmi, J., Svedholm-Häkkinen, A. M. & Lindeman, M. Intuitive physics
ability in systemizers relies on differential use of the internalizing system and
long-term spatial representations. Neuropsychologia 109, 10–18 (2018).

7. McDermott, L. C. & Redish, E. F. Resource letter: PER-1: physics education research.
Am. J. Phys. 67, 755–767 (1999).

8. McDermott, L. C. Research on conceptual understanding in mechanics. Phys.
Today 37, 24–32 (1984).

9. Halloun, I. A. & Hestenes, D. Common sense concepts about motion. Am. J. Phys.
53, 1056–1065 (1985).

10. Hammer, D. More than misconceptions: multiple perspectives on student
knowledge and reasoning, and an appropriate role for education research. Am. J.
Phys. 64, 1316–1325 (1996).

11. Larkin, J., McDermott, J., Simon, D. P. & Simon, H. Expert and novice performance
in solving physics problems. Science 208, 1335–1342 (1980).

12. McDermott, L. C. Millikan lecture 1990: what we teach and what is learned—
closing the gap. Am. J. Phys. 59, 301–315 (1991).

13. Chi, M. T. H., Slotta, J. D. & De Leeuw, N. From things to processes: a theory of
conceptual change for learning science concepts. Learn. Instr. 4, 27–43 (1994).

14. Chi, M. T. H. Commonsense conceptions of emergent processes: why some
misconceptions are robust. J. Learn. Sci. 14, 161–199 (2005).

15. Gupta, A., Hammer, D. & Redish, E. F. The case for dynamic models of learners’
ontologies in physics. J. Learn. Sci. 19, 285–321 (2010).

16. Chi, M. T. H. In (ed. Vosniadou) International Handbook of Research on Conceptual
Change. 61–82 (Routledge, 2008).

17. Hammer, D., Gupta, A. & Redish, E. F. On static and dynamic intuitive ontologies. J.
Learn. Sci. 20, 163–168 (2011).

18. Baron-Cohen, S., Wheelwright, S., Spong, A., Scahill, V. & Lawson, J. Are intuitive
physics and intuitive psychology independent? J. Dev. Learn. Disord. 5, 47–78
(2001).

19. Solomon, G. E. A. & Zaitchik, D. Folkbiology. Wiley Interdiscip. Rev. Cogn. Sci. 3,
105–115 (2012).

20. McLaren, I. P. L., Wood, K. & McLaren, R. Naïve Physics—the wrong theory?. Proc.
35th Annu. Conf. Cogn. Sci. Soc. 6, 1008–1013 (2013).

21. diSessa, A. A. Toward an epistemology of physics. Cogn. Instr. 10, 105–225 (1993).
22. Redish, E. A theoretical framework for physics education research. In (eds Vice-

ntini, M. & Redish, E. F.) Proceedings of the International School of Physics, “Enrico
Fermi” 1–63 (IOS Press, Amsterdam, 2004, 2003).

23. Dunbar, K., Fugelsang, J. & Stein, C. In (eds Lovett, M. C. & Shah, P.) Thinking With
Data 193–205 (Lawrence Erlbaum Associates, 2007). https://doi.org/10.4324/
9780203810057.

24. Vann, S. D., Aggleton, J. P. & Maguire, E. A. What does the retrosplenial cortex do?
Nat. Rev. Neurosci. 10, 792–802 (2009).

25. Robinson, J. L. et al. Neurofunctional topography of the human hippocampus.
Hum. Brain Mapp. 36, 5018–5037 (2015).

26. Hestenes, D., Wells, M. & Swackhamer, G. Force concept inventory. Phys. Teach.
30, 141–158 (1992).

27. Savinainen, A. & Scott, P. The Force Concept Inventory: a tool for monitoring
student learning. Phys. Educ. 37, 45–52 (2002).

28. Lasry, N., Watkins, J., Mazur, E. & Ibrahim, A. Response times to conceptual
questions. Am. J. Phys. 81, 703–706 (2013).

29. Rubin, T. N. et al. Decoding brain activity using a large-scale probabilistic
functional-anatomical atlas of human cognition. PLOS Comput. Biol. 13, e1005649
(2017).

30. Morris, G. A. et al. An item response curves analysis of the Force Concept
Inventory. Am. J. Phys. 80, 825–831 (2012).

J.E. Bartley et al.

7

Published in partnership with The University of Queensland npj Science of Learning (2019)    20 

https://neurovault.org/collections/4758/
https://github.com/NBCLab/PhysicsLearning/tree/master/FCI
https://github.com/NBCLab/PhysicsLearning/tree/master/FCI
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
https://doi.org/10.4324/9780203810057
https://doi.org/10.4324/9780203810057


31. Brewe, E., Bruun, J. & Bearden, I. G. Using module analysis for multiple choice
responses: a new method applied to Force Concept Inventory data. Phys. Rev.
Phys. Educ. Res. 12, 1–19 (2016).

32. Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal
community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).

33. Scott, T. F. & Schumayer, D. Conceptual coherence of non-Newtonian worldviews
in Force Concept Inventory data. Phys. Rev. Phys. Educ. Res. 13, 010126 (2017).

34. Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. A new neural framework for
visuospatial processing. Nat. Rev. Neurosci. 12, 217–230 (2011).

35. Kourtzi, Z. & Kanwisher, N. Activation in human MT/MST by static images with
implied motion. J. Cogn. Neurosci. 12, 48–55 (2000).

36. Senior, C. et al. The functional neuroanatomy of implicit-motion perception or
‘representational momentum’. Curr. Biol. 10, 16–22 (2000).

37. Galashan, D., Fehr, T., Kreiter, A. K. & Herrmann, M. Human area MT+ shows load-
dependent activation during working memory maintenance with continuously
morphing stimulation. BMC Neurosci. 15, 85 (2014).

38. Council, N. R. In (eds Singer, S. R., Nielsen, N. & Schweingruber, H. A.) Discipline-
Based Education Research: Understanding and Improving Learning in Under-
graduate Science and Engineering. 75–118 (National Academies Press, 2012).
https://doi.org/10.17226/13362.

39. Andrews-Hanna, J. R., Saxe, R. & Yarkoni, T. Contributions of episodic retrieval and
mentalizing to autobiographical thought: Evidence from functional neuroima-
ging, resting-state connectivity, and fMRI meta-analyses. Neuroimage 91,
324–335 (2014).

40. Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic
system? A critical review and meta-analysis of 120 functional neuroimaging
studies. Cereb. Cortex 19, 2767–2796 (2009).

41. Fosnot, C. T. & Perry, R. S. In (ed. Fosnot, C. T.) Constructivism: Theory, Perspectives,
and Practice. 8–38 (Teachers College Press, 2013). http://faculty.arts.ubc.ca/
emeyers/LIBR535/readings/Fosnot&Perry_2005.pdf.

42. Leech, R. & Sharp, D. J. The role of the posterior cingulate cortex in cognition and
disease. Brain 137, 12–32 (2014).

43. Sarathy, V. Real world problem-solving. Front. Hum. Neurosci. 12, 261 (2018).
44. Howard-Jones, P. A. et al. The principles and practices of educational neu-

roscience: Comment on Bowers (2016). Psychol. Rev. 123, 620–627 (2016).
45. Von Korff, J. et al. Secondary analysis of teaching methods in introductory phy-

sics: a 50 k-student study. Am. J. Phys. 84, 969–974 (2016).
46. Lasry, N., Rosenfield, S., Dedic, H., Dahan, A. & Reshef, O. The puzzling reliability of

the Force Concept Inventory. Am. J. Phys. 79, 909 (2011).
47. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious

but systematic correlations in functional connectivity MRI networks arise from
subject motion. Neuroimage 59, 2142–2154 (2012).

48. Foti, N. J., Hughes, J. M. & Rockmore, D. N. Nonparametric sparsification of
complex multiscale networks. PLoS ONE 6, e16431 (2011).

ACKNOWLEDGEMENTS
Primary funding for this project was provided by NSF REAL DRL-1420627; additional
support was provided by NSF 1631325, NIH R01 DA041353, NIH U01 DA041156, NSF

CNS 1532061, NIH K01DA037819, NIH U54MD012393, and the FIU Graduate School
Dissertation Year Fellowships. Thanks to Karina Falcone, Rosario Pintos Lobo, and
Camila Uzcategui for their assistance with data collection and to the Department of
Psychology of the University of Miami for providing access to their MRI scanner.
Special thanks to the FIU undergraduate students who volunteered and participated
in this project.

AUTHOR CONTRIBUTIONS
Designed research: A.R.L., E.B., S.M.P., M.T.S., R.W.L. and J.E.B. Performed research: J.E.
B., E.R.B., K.L.B., E.I.B., R.O. and A.N. Contributed analysis tools: J.E.B., M.C.R., T.S., K.L.B.
and E.B. Analyzed data: J.E.B., M.C.R., T.S. and E.B. All authors contributed to the
interpretation of the results and writing the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41539-019-0059-8.

Correspondence and requests for materials should be addressed to A.R.L.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2019

J.E. Bartley et al.

8

npj Science of Learning (2019)    20 Published in partnership with The University of Queensland

https://doi.org/10.17226/13362
http://faculty.arts.ubc.ca/emeyers/LIBR535/readings/Fosnot&Perry_2005.pdf
http://faculty.arts.ubc.ca/emeyers/LIBR535/readings/Fosnot&Perry_2005.pdf
https://doi.org/10.1038/s41539-019-0059-8
https://doi.org/10.1038/s41539-019-0059-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Brain activity links performance in science reasoning with conceptual approach
	Introduction
	Results
	Physics problem solving engages visual motion, central executive, and default mode processes
	Difficulty, but not accuracy and strategy, modulate brain activity during problem solving
	Students demonstrate dissociable brain activity linked to knowledge fragmentation

	Discussion
	Methods
	Participants
	FCI task
	fMRI acquisition and preprocessing
	General linear model analyses
	Task-based functional connectivity analysis
	Brain-behavior correlates
	Student response profiles
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




