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Abstract
Collecting physiological data during fMRI experiments can improve fMRI data cleaning and
contribute to our understanding of psychophysiological processes; however, these recordings are
frequently fraught with artifacts from the MRI pulse sequence. Here, we assess data from BIOPAC
Systems, Inc., one of the more widely-used manufacturers of physiological monitoring equipment,
and evaluate their recommendations for filtering such artifacts from electrocardiogram and
electrodermal activity data collected during single-band, single-echo fMRI sequences and extend
these recommendations to address artifacts associated with multiband, multi-echo fMRI sequences.
While the magnitude and frequencies of artifacts differ with these aspects of pulse sequences, their
effects can be mitigated via application of digital filters incorporating slice collection, multiband
factor, and repetition time. The implementation of these filters is provided both in interactive online
notebooks and an open source denoising tool.
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Introduction
Physiological recordings collected simultaneously during functional magnetic resonance imaging
(fMRI) can add valuable information about a participant’s physical state and provide quantitative
assessment of psychological phenomena. They offer the opportunity to study relations between the
central and autonomic nervous systems that underlie cognition and behavior. For example,
physiological arousal has been assessed during fMRI using heart rate, via electrocardiogram (ECG)
recordings and skin conductance, via electrodermal activity (EDA) recordings. Inclusion of such
measures may enhance interpretation of studies examining decision making (reviewed in (1), typical
and disordered affective processing (2–5), pain (6–8), autonomic regulation (9–13). Furthermore, heart
rate has known effects on the BOLD signal (14–16) plays a nontrivial role in the emergence of
large-scale functional brain networks (17). Thus, measures of heart rate play a role, too, in fMRI
denoising (18–20).

Collecting electrophysiological recordings in the MR environment adds MR-induced artifacts to the
recordings. Often, the magnitude of these MR artifacts is much larger than that of the phenomena of
interest, necessitating additional data cleaning steps before such data can be used to assess
psychophysiological phenomena. Single-echo MRI sequences (Figure 1A) that measure the
blood-oxygenation level dependent (BOLD) signal are the norm in fMRI research. However, recent
advances in MR technology and denoising approaches are prompting researchers to increasingly turn
to multi-echo sequences (Figure 1B), which offer better differentiation between BOLD signal and
non-neural noise for improved estimates of brain activation (21–23). While these sequences arguably
offer better quality fMRI data, they require more complex K-space sampling to collect multiple echoes,
which introduces added artifacts to simultaneously collected electrophysiological recordings.
Furthermore, adding echoes to an MRI sequence introduces further limitations on the temporal
resolution of the sequence, requiring a longer repetition time (TR). Using multiband or simultaneous
multi-slice (SMS) excitation allows researchers to reduce the amount of time required to acquire a
single volume, by acquiring several slices simultaneously, and effectively minimizing the multi-echo
temporal constraints on TR. This is an important consideration for human fMRI studies, in which a
study’s power to detect an effect is linearly related to the number of timepoints in a scan (24).

In addition to the technical challenges, neuroimaging researchers who are new to physiological
monitoring likely encounter logistical and educational hurdles as well. There are several
manufacturers that provide options for physiological monitoring in the MR environment, including
BIOPAC Systems, Inc. (Goleta, CA United States), ADInstruments (Sydney, Australia), and the MRI
scanner manufacturers themselves. While all provide MR-safe equipment for recording physiological
data safely in the scanner, their resources are not widely available. Of these, BIOPAC is a popular
choice among neuroimaging researchers and among the only manufacturers to offer
recommendations for filtering MR-noise out of concurrently collected electrophysiological data.
There is a growing need for transparent, open-source resources for integrating physiological data into
neuroimaging research. Several such efforts are currently underway, including NeuroKit
(neuropsychology.github.io/neurokit) and the Physiopy tool suite and associated community
(github.com/physiopy). However, there remains a gap where open tools and recommendations for
filtering noise associated with MR-sequence specifics are concerned.
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Figure 1. Schematic representation of (A) a single-band, single-echo GRE-EPI pulse sequence and (B) a
multi-band, multi-echo GRE-EPI pulse sequence. RF pulse differences (25) are highlighted in the first row,
while differences in time-varying gradient fields (26) are shown in the following three rows. NOTE: This
schematic presents a general example of differences between single-band, single-echo sequences and
multi-band, multi-echo sequences and is not specific to those sequences described here.

The present study assessed MR-artifact removal strategies from electrophysiological (i.e., ECG and
EDA) data collected during single- and multi-echo multiband EPI scans, focusing on data collected
with BIOPAC systems and the manufacturer’s filtering recommendations. Our goals were to (1)
compare MR-related noise from single- and multi-echo EPI sequences, (2) assess current filtering
recommendations in multiband and multi-echo contexts, and (3) if current filtering recommendations
appeared insufficient for removing MR-related artifacts from concurrent electrophysiological data, to
redefine these recommendations accordingly. To achieve this, we used ECG and EDA data collected
during both single- and multi-echo, single- and multi-band BOLD EPI sequences, from three separate
datasets. First, data were Fourier transformed to identify MR-artifact frequencies, then digital filters
were applied, and cleaned data were compared across the filtering process, both visually and
quantitatively. We anticipated that MR-artifacts would be greatest during multiband, multi-echo EPI
sequences and while current filtering recommendations would mitigate MR-artifacts, adaptations
may be necessary for multiband and multi-echo pulse sequences. We expected that adaptations to the
slice collection frequency would be necessary, to account for slices collected in parallel. Finally, we
make these findings openly available both as interactive online code and easy-to-use command-line
software that is compatible with current data standards, sharing updated recommendations for
removing MR-artifacts from these physiological data in multiband and multi-echo contexts.

Methods
Data used here come from three separate studies. The first is a larger study of younger and older
adults (N = 52: 26 younger (i.e., aged 13-34 years; 9 female), and 26 older (i.e., aged 55-75 years; 9
female) collected at the University of Southern California Dana and David Dornsife Neuroimaging
Center (hereafter the Mather dataset; https://doi.org/10.18112/openneuro.ds001242.v1.0.0; (27–29))
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including electrocardiogram (ECG) and electrodermal activity (EDA) data collected during
single-band, single-echo BOLD fMRI scans. The second and third are two pilot studies collected at
Florida International University's Center for Imaging Science: one of children that includes ECG and
EDA data collected during multiband, single-echo BOLD fMRI scans (N = 2, male, aged 9 years;
hereafter the Musser dataset) and one of adults that includes ECG and EDA data collected during
multiband, multi-echo BOLD fMRI scans (N = 5, all female, aged 26-39 years; hereafter the DIVA
dataset; https://doi.org/10.18112/openneuro.ds002278.v1.0.1). More information about the
physiological data and concurrent BOLD fMRI sequences for each study are provided below.

Physiological recordings
Physiological data for the Mather dataset was acquired using MRI-compatible modules, leads, and
electrodes from BIOPAC Systems. Data were acquired using a BIOPAC MP150 system, connected to
subject leads. Electrocardiogram (ECG) recordings were collected using radiotranslucent EL508
electrodes with GEL100 and LEAD108 leads, with an ECG100C-MRI amplifier (27).

Physiological data for the Musser and DIVA datasets were acquired using MRI-compatible modules,
leads, and electrodes from BIOPAC Systems. Data were acquired using a BIOPAC MP150 system,
connected to subject leads by two standard MEC-MRI cables that passed through the MRI patch panel
via MRI-RFIF filters and ran without loops to the bore, then parallel with the subject.
Electrocardiogram (ECG) recordings were collected using radiotranslucent EL508 electrodes with
GEL100 and 15cm long LEAD108B leads, with an ECG100C-MRI amplifier. Electrodes were placed in
a 3-lead bipolar monitoring configuration, 6 to 8 inches apart diagonally across the heart from right
clavicle to left rib cage, with the ground placed 6 to 8 inches away on the right rib cage. Electrodermal
activity (EDA) recordings were collected using radiotranslucent EL509 electrodes with GEL101 and
LEAD108B leads, with an EDA100C-MRI amplifier. Leads were placed on the palm of the
participant’s non-dominant hand, on the thenar and hypothenar eminences. All physiological data
were collected at a rate of 2000 Hz, with ECG and EDA collected concurrently from all participants.
Physiological data collection began once participants were loaded on the scanner bed and continued
until the scanner bed exited the bore after the scanning session, including several minutes per
participant of data collected in the absence of an MR pulse sequence.

BOLD EPI Sequences

Table 1. BOLD sequence parameters for each dataset.

Parameter Mather Musser DIVA

TR/TE(s) 2000 ms / 25 ms 800 ms / 30 ms 1500 ms / [11.80 ms,
28.04 ms, 44.28 ms,
60.52 ms]

Voxel Size 4.0 mm isotropic 2.4 mm isotropic 2.5 mm isotropic

FOV 256 mm 216 mm 216 mm

# of slices 41 60 48
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MB factor – 6 3

Slice acquisition Interleaved Interleaved Interleaved

Parallel imaging None GRAPPA = 2

Flip angle 90º 52º 77º

Excite pulse duration NA 2560µs

Slice orientation Axial Transverse 30º transverse to
coronal

Encoding direction A >> P A >> P

Number of volumes Fear conditioning: 180
Spatial detection: 5 x
160

Emotion regulation: 4 x
450
Rest: 2 x 419

Varies per participant

Single-band, single-echo BOLD EPI sequence (Mather). Physiological recordings were acquired in
the bore of a whole-body 3-Tesla Siemens MAGNETOM Prisma with a 32-channel head/neck coil
during a single-band, single-echo (SBSE) blood-oxygenation-level-dependent (BOLD) echo planar
imaging (EPI) sequence (Table 1, Mather). The SBSE sequence used here is a gradient-echo EPI
sequence that acquired 41 axial slices using a single echo (TE = 25ms) with TR = 2000 ms, no
multiband acceleration, interleaved acquisition, and a 90º flip angle. Participants completed one
6-minute run of a fear conditioning task, and five runs of a spatial detection task that each lasted 5:20.

Multiband, single-echo BOLD EPI sequence (Musser). Physiological recordings were acquired in the
bore of a whole-body 3-Tesla Siemens MAGNETOM Prisma with a 32-channel head/neck coil, during
both a multiband, single-echo (MBSE) BOLD EPI sequence (Table 1, Musser). The MBSE sequence
used here is the one developed for and used by the Adolescent Brain Cognitive Development
(ABCD)℠ Study (30). In brief, this sequence acquired 60 transverse slices, with an anterior to posterior
phase encoding direction, using a single echo (TE = 30ms) with TR = 800ms, a multiband acceleration
factor of 6, interleaved acquisition, in-plane GRAPPA acceleration, and a 52º flip angle. More
information about the scan protocols is available with the curated ABCD data via the NIMH Data
Archive (NDA; https://abcdstudy.org/scientists/protocols/). Participants completed four runs of an
emotion regulation task (31–33)  that each lasted 5:35 and two 5-minute runs of rest.

Multiband, multi-echo BOLD EPI sequence (DIVA). Physiological recordings were acquired in the
bore of a whole-body 3-Tesla Siemens MAGNETOM Prisma with a 32-channel head/neck coil during
a multiband, multi-echo (MBME) BOLD EPI sequence (Table 1, DIVA). The MBME BOLD EPI
sequence used here is from the distribution of multi-band accelerated EPI sequences (Moeller et al.,
2010) developed by the Center for Magnetic Resonance Research (CMRR) at the University of
Minnesota. The MBME GRE-EPI sequence acquired 48 slices at a 30º transverse-to-coronal orientation
with anterior-to-posterior phase encoding direction at each of 4 echoes (TE1 = 11.80ms, TE2 = 28.04ms,
TE3 = 44.28ms, TE4 = 60.52ms) with TR = 1500ms, a multiband acceleration factor of 3, interleaved
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acquisition, in-plane GRAPPA acceleration, a 77º flip angle, and an excite pulse duration of 2560µs
(Figure 1B). Participants completed six runs, 6 to 11 minutes each, of film watching (34), two runs of
the same emotion regulation task (35), two runs of a probabilistic selection task, one 6 minutes and the
other 9 minutes (36), and two runs of 5 minutes of rest.

The full parameters and fMRI data are available on OpenNeuro.org
(https://openneuro.org/datasets/ds002278/versions/1.0.1).

Software tools
All code used to create and apply these filters is available on GitHub
(https://github.com/62442katieb/mbme-physio-denoising), and was written and run using Python
3.7.3. The bioread library (https://github.com/uwmadison-chm/bioread, v. 1.0.4) was used to read in
physiological recordings stored in AcqKnowledge format, data were manipulated using Pandas
(https://pandas.pydata.org/, v. 1.0.3), digital filters were created and applied using SciPy
(https://www.scipy.org, v. 1.9.0; (37)), and fast Fourier transforms implemented in NumPy
(https://numpy.org/, v. 1.18.2; (38)).

Denoising electrocardiogram recordings
Fourier transform was applied to ECG and EDA data collected both in the presence and absence of
MR pulse sequences to identify the frequencies of MR-related artifacts. Then, the same for each the
ECG and EDA data, we applied digital filters to mitigate the effects of these artifacts on the
recordings.

BIOPAC filtering
First, we applied the manufacturer (i.e., BIOPAC) recommendation for single-band, single-echo
sequences: comb band-stop filters at the slice collection frequency and its harmonics up to the Nyquist
frequency, and then Fourier transformed the results to assess how these filters mitigated artifacts. This
slice collection frequency is defined as:

vslice collection = number of slices ÷ TR Eq. 1

Here, comb band-stop filters were implemented as infinite impulse response (IIR) comb notch filters
to account for the fundamental frequency and its harmonics. These filters were then applied to the
raw recordings and the resulting filtered signal was Fourier transformed.

Bottenhorn filtering
Here, we present an update to this calculation, adjusting the slice collection frequency to account for
the additional  artifacts identified in frequency spectra due to multiband slice acquisition (Eq. 2).

vslice collection = number of slices ÷ MB factor ÷ TR Eq. 2

Again, comb band-stop filters were implemented as IIR comb notch filters with this adjusted slice
frequency. These filters were then applied to the raw recordings and the resulting filtered signal was
Fourier transformed. Further, additional IIR notch filters centered at the TR frequency were
implemented and applied to mitigate the effects of additional confounding frequencies present in
MBME-ECG recordings.
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Denoising assessments
The quality of ECG data was estimated before and after filtering using two automated approaches:
kurtosis and a heuristic-based signal quality index (SQI) (39). Kurtosis has been previously used and
evaluated as a signal quality index (SQI) for ECG data (40, 41), such that higher kurtosis is indicative
of higher quality. Kurtosis was calculated using Fisher’s definition of kurtosis, as applied by the
pandas Python package (v1.0.5) (42, 43). Wilcoxon signed-rank tests were used to compare kurtosis
between raw and filtered data. The heuristic quality index (hereafter Zhao heuristic) delineates
between “unacceptable”, “barely acceptable”, and “excellent” quality ECG signals by performing a
fuzzy comprehensive evaluation of four SQIs: R peak detection, QRS wave power spectrum
distribution, kurtosis, and baseline relative power. The Zhao heuristic was computed by the
ecg_quality function from NeuroKit2 (https://neuropsychology.github.io/NeuroKit/; (44)),
which calculates the four SQIs and synthesizes them into a single quality estimate as described in
detail by Zhao and Zhang (2018) (39). Chi-squared tests were used to compare heuristic frequencies
between filtering approaches.

Finally, physiological data were compared across steps and to data collected in the absence of MR
pulse sequences, using magnitude squared coherence to assess linear dependence across the
frequency band in which physiologically-relevant signals were found: 0.5 - 50Hz for ECG and <0.5Hz
for EDA. Magnitude squared coherence (Cxy) measures the linear dependence between two vectors
(x, y) and can be used to assess the similarity of frequencies between two signals. Here, we use
Welch’s method ((45); Eq. 3), as implemented in SciPy (v1.9.0):

Eq. 3𝐶
𝑥𝑦

 =  
|𝑃

𝑥𝑦
|2

𝑃
𝑥𝑥

𝑃
𝑦𝑦

Where Pxy is the cross spectral density estimate of signals x and y; Pxx and Pyy are the power spectral
densities of x and y, respectively.

This allowed a direct comparison of frequency spectra between (i) filtering approaches, between (ii)
filtered recordings and unfiltered recordings, and between (iii) filtered recordings and recordings in
the absence of EPI sequences. In this case, these comparisons show which frequencies have been
removed between filtering steps (low Cxy) and which frequencies remain (high Cxy).

Results
Frequencies of MR-related artifacts
Comparing Fourier transforms to ECG recordings in both the absence (Figure 2, first row) and
presence (Figure 2, second row) of single-band single-echo (Figure 2, left column), multiband
multi-echo (Figure 2, center column) and multiband multi-echo (Figure 2, right column) BOLD EPI
sequences (hereafter SBSE-ECG, MBSE-ECG, and MBME-ECG, respectively) revealed MR-related
noise in frequencies corresponding to the TR and slice acquisition. This noise demonstrated greater
spectral power in recordings collected during multi-echo sequences than during single-echo
sequences (Figure 2D vs. 2L). The presence and relative impacts of this noise are visually apparent in
the difference between recordings collected before and during the two BOLD EPI sequences in Figure
2 (MBSE-ECG in 2A vs. 2C; MBME-ECG in 2I vs. 2K) and evidenced by greater power in the
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frequencies corresponding with TR and slice acquisition than with biologically-relevant signals
(MBSE-ECG in 2B vs. 2D; MBME-ECG, 2J vs. 2L). These artifacts occur at frequencies equal to (a) the
multiband slice frequency which is equal to the number of slices divided by the multiband factor per
TR (indicated by circular, blue-green markers), (b) the TR frequency (indicated by triangular, pink
markers), and the harmonics of these frequencies. Furthermore, the power of these confounding
signals was much greater than in MBSE-ECG recordings and caused greater corruption of the ECG
signal (Figure 2C vs 2K).

Denoising electrocardiogram recordings
BIOPAC-recommended filtering applied to SBSE-, MBSE-, and MBME-ECG recordings, via IIR notch
filters , resulted in an incomplete mitigation of MR-related artifacts, which are still clearly present in
the frequency spectra (Figure 2F, N). However, the adjusted slice frequency, and in the case of
MB-ECG data at TR frequency, filters mitigated the effects of the identified MR scanner noise in both
MBSE- and MBME-ECG recordings, per visual inspection of the power spectra (Figure 2H, P).
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Figure 2. Electrocardiogram recordings through the denoising process. ECG during single-band, single-echo (SBSE) BOLD EPI sequence: (A) Six seconds of
ECG recording during a single-band, single-echo BOLD EPI sequence and (B) the Fourier transform of that recording. (C) Six seconds of ECG recordings
during a single-band, single-echo BOLD EPI sequence and (D) the Fourier transform of that recording, demonstrating sequence-related artifacts at the
slice frequency (green circles) and TR frequency (pink triangles), and their harmonics. ECG during multiband, single-echo (MBSE) BOLD EPI sequence: (E)
Six seconds of ECG recordings before the EPI sequence started, after the participant was moved into the scanner bore and (F) the associated power
spectrum, which shows remaining MR-related artifacts after filtering. (G) Six seconds of ECG recordings during a multiband, single-echo BOLD EPI
sequence and (H) the Fourier transform of that recording, demonstrating sequence-related artifacts at the slice frequency (green circles) and TR frequency
(pink triangles), and their harmonics (I) The same 6 seconds of ECG recordings, following application of IIR notch filters to remove the MR-related
artifacts, per manufacturer recommendations and (J) the associated power spectrum, which shows remaining MR-related artifacts after filtering. (K) The
same 6 seconds, following application of IIR notch filters updated for multiband acquisition and (L) the associated power spectrum, displaying mitigated
artifacts, but not complete removal. ECG during multiband, multi-echo (MBME) BOLD EPI sequence: (M) 6 seconds of ECG recordings from an individual
in the MR environment prior to scanning with a BOLD EPI sequence and (N) the power spectrum of that pre-EPI recording. (O) 6 seconds of ECG
recordings from the same individual and scanning session during a multiband, multi-echo BOLD EPI sequence data and (P) the power spectrum of that
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ECG recording, demonstrating MR-related artifacts at the slice frequency (green circles) and TR frequency (pink triangles), and their harmonics. (Q) The
same 6 seconds of ECG recording, following the application of BIOPAC-recommended filters and (R) the Fourier transform of that recording, displaying
the remaining MR-related artifacts. (S) The same 6 seconds of ECG recording, following the application of IIR notch filters at the slice and TR frequencies
and (T) the Fourier transform of that cleaned recording, displaying the relative absence of MR-related artifacts. NOTE: Power spectra (i.e., plots of signal
Fourier transforms) y-axes are log10-scaled.
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Denoising electrodermal activity recordings
Prior research on EDA recordings collected during single-band, single-echo BOLD sequences has
shown minimal MR-related artifacts in EDA data (46). As such, EDA recordings collected
simultaneously with fMRI data do not typically require MR-specific denoising. The EDA recordings
acquired during a single-band, single-echo BOLD EPI sequence (hereafter SBSE-EDA) included here
(Figure 3A, B) support this idea, showing minimal MR-related artifacts and, instead, induced artifacts
following filtering (Figure 3C, D). On the other hand, a Fourier transform of EDA recordings acquired
during the multiband, single-echo BOLD EPI sequence (hereafter MBSE-EDA) in question revealed
noise in sequence-specific frequency bands (Figure 3D, L) corresponding to the harmonics of the TR
frequency (pink triangles) and, to a lesser extent, the slice collection frequency (green circles).
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Figure 3. Electrodermal activity recordings through the denoising process. EDA during single-band, single-echo (SBSE) BOLD EPI sequence: (A) Six
seconds of EDA recording during a single-band, single-echo BOLD EPI sequence and (B) the Fourier transform of that recording. (C) Six seconds of EDA
recordings during a single-band, single-echo BOLD EPI sequence and (D) the Fourier transform of that recording, demonstrating sequence-related
artifacts at the slice frequency (green circles) and TR frequency (pink triangles), and their harmonics. EDA during multiband, single-echo (MBSE) BOLD EPI
sequence: (E) Six seconds of EDA recordings before the EPI sequence started, after the participant was moved into the scanner bore and (F) the associated
power spectrum, which shows remaining MR-related artifacts after filtering. (G) Six seconds of EDA recordings during a multiband, single-echo BOLD
EPI sequence and (H) the Fourier transform of that recording. (I) The same 6 seconds of EDA recordings, following application of IIR notch filters to
remove the MR-related artifacts, per manufacturer recommendations and (J) the associated power spectrum, which shows remaining MR-related artifacts
after filtering. (K) The same 6 seconds, following application of IIR notch filters updated for multiband acquisition and (L) the associated power
spectrum, displaying mitigated artifacts, but not complete removal. EDA during multiband, multi-echo (MBME) BOLD EPI sequence: (M) 6 seconds of EDA
recordings from an individual in the MR environment prior to scanning with a BOLD EPI sequence and (N) the power spectrum of that pre-EPI
recording. (O) 6 seconds of EDA recordings from the same individual and scanning session during a multiband, multi-echo BOLD EPI sequence data and
(P) the power spectrum of that EDA recordings. (Q) The same 6 seconds of EDA recording, following the application of BIOPAC-recommended filters
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and (R) the Fourier transform of that recording, displaying the remaining MR-related artifacts. (S) The same 6 seconds of EDA recording, following the
application of IIR notch filters at the slice and TR frequencies and (T) the Fourier transform of that cleaned recording, displaying the relative absence of
MR-related artifacts. NOTE: Power spectra (i.e., plots of signal Fourier transforms) y-axes are log10-scaled.
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Quantitative assessments of denoised data
Filtering approaches differentially impacted the quality of ECG recordings across the three datasets
included here. BIOPAC-recommended filtering did not significantly improve ECG signal quality
across the Mather (Table 2, SBSE-ECG), Musser (Table 2, MBSE-ECG) or DIVA (Table 2, MBME-ECG)
datasets, according to any of the included metrics. The updated filtering recommendations presented
here (Table 2, Bottenhorn) significantly improved ECG signal quality in MBSE- and MBME-ECG data
compared with the signal filtered per BIOPAC-recommendations, but not compared with the raw
signal. However, visual inspection of the example signals in (Figure 2) across filtering approaches
show a mitigation of MR-associated noise and, in the case of MBME-ECG data, increased R-peak
amplitude compared with the surrounding noise. Thus, while the updated filtering recommendations
might not objectively improve signal quality, they might still benefit researchers interested in
computing heart rate or variability therein. For distributions of each quality index and heart rate
estimates across datasets and filtering approaches, see Supplementary Figure 1.

Table 2. Signal quality across filtering approaches, averaged across participants, runs, and sessions.

Raw BIOPAC Bottenhorn Raw <
BIOPAC

Raw <
Bottenhorn

BIOPAC <
Bottenhorn

SBSE-ECG

Kurtosis 8.14 ± 17.34 8.07 ± 17.07 – p = 0.99 – –

Zhao 44 / 162 / 97 42 / 164 / 97 – p = 0.94 – –

MBSE-ECG

Kurtosis 12.75 ± 10.13 10.75 ± 10.00 12.79 ± 12.4 p = 1.0 p = 0.70 p = 0.0007

Zhao 0 / 0 / 12 1 / 7 / 4 0 / 3 / 9 – – –

MBME-ECG

Kurtosis 2.07 ± 1.99
(2.08 ± 2.02)

1.68 ± 2.09
(1.69 ± 2.12)

6.04 ± 22.85*
(2.11 ± 2.07)

p =1.0
(p = 1.0)

p = 0.78
(p = 0.08)

p = 0.007
(p = 0.025)

Zhao 0 / 123 / 13
(0 / 119 / 13)

0 / 123 / 13
(0 / 119 / 13)

0 / 116 / 20
(0 / 116 / 16) – p = 0.09

(p = 0.38)
p = 0.09

(p = 0.42)

Note: Zhao heuristics are represented as “unacceptable / barely acceptable / excellent”. Bold
indicates significantly greater quality index across participants, runs, and sessions (where
applicable) at α < 0.05, per 1-tailed Wilcoxon signed-rank test. *In the MBME-ECG data one
participant’s last four scans demonstrated outlier kurtosis values by an order of magnitude after
Bottenhorn filtering. Values in parentheses represent the metrics and comparison p-values after
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removing those runs from analysis.

Magnitude squared coherence (i.e., linear dependence, or signal similarity across frequencies) of ECG
recordings across the filtering approaches described above demonstrated the efficacy of applied notch
filters in removing the targeted frequencies from ECG recordings. Linear dependence between ECG
recordings collected in the absence of either a single- or multi-echo multiband BOLD EPI sequence
and recordings collected during those sequences was near zero across biologically-relevant
frequencies. On the other hand, magnitude squared coherence of EDA recordings collected before and
during BOLD EPI sequences, and across filtering approaches indicate greater linear dependence
between signals collected in the absence of BOLD EPI sequence and those collected during multi-echo
than during single-echo BOLD EPI sequence. Across raw and filtered SBSE-, MBSE-, and MBME-EDA
data, magnitude squared coherence demonstrated the efficacy of each filter in removing the desired
frequencies from the signals. Overall, this supports the claim in prior research that the impacts of
MR-related artifacts on simultaneously-collected EDA recordings are minimal, although not
nonexistent.

Research Products
The workflows used to clean these data and create the associated figures are available as a
command-line Python script and in interactive Jupyter Notebooks available at:
https://github.com/62442katieb/mbme-physio-denoising/.

These notebooks are additionally available, interactively, at:
https://mybinder.org/v2/gh/62442katieb/mbme-physio-denoising/binder-live.

Discussion
Here, we assessed the confounding influence of both single- and multiband, single-echo and
multi-echo BOLD MRI sequences on simultaneously acquired peripheral physiological recordings
(i.e., ECG and EDA). These artifacts were demonstrated in recordings collected over the course of
several MRI scans, comparing those of a SBSE BOLD EPI scan (i.e., from the Mather dataset) with
those of a MBSE BOLD EPI sequence with a multiband factor of 6 (i.e., from the Musser dataset) and a
MBME BOLD EPI sequence that acquired 4 volumes per RF excitation with a multiband factor of 3
(i.e., from the DIVA dataset). Two fundamental confounding frequencies were identified,
corresponding with the slice frequency and the repetition time of the MRI sequence, with notably
greater power in the MBSE and MBME sequences, compared with the SBSE sequence. Applying a
series of notch filters centered at frequencies corresponding to the sequence’s TR and slice collection
frequency, approximating a comb band-stop filter (per manufacturer (i.e., BIOPAC) recommendations)
provided marked decrease of confounding signals. Based on this, we present an updated set of
recommendations for mitigation of pulse sequence-related artifacts in ECG and EDA recordings
collected during multiband BOLD MRI scans. These recommendations make it easier for researchers
to include physiological recordings during functional MRI studies that capitalize on the improved
temporal signal-to-noise ratio (tSNR) of multi-echo pulse sequences and the improvements to
temporal resolution made possible by simultaneous multi-slice acquisition. While we did not test
these recommendations across a range of pulse sequences with different numbers of echoes and
multiband factors, it is likely that our recommendations will generalize across MBME BOLD EPI
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sequences due to the linear relationship between confounding frequency bands and the sequence’s TR
and multiband factor.

Building on prior research, we found MRI sequence artifacts in simultaneously collected ECG
recordings in frequency bands correspond to the number of asynchronously-collected slices (i.e., the
number of slices divided by the multiband factor). Furthermore, these confounding frequencies were
of greater power in recordings collected during multi-echo BOLD EPI scans than during single-echo.
The impact of these corrupting frequencies can be removed with a series of IIR notch filters
corresponding to the TR and slice collection frequencies and their harmonics up to the Nyquist
frequency. This approach imparts greater increases in R-peak discriminability, though not necessarily
objective signal quality indices, to data collected during multiband, single-echo EPI scans than during
multiband, multi-echo EPI scans. Further processing is needed in order to distinguish
moment-to-moment heart rate and data derived therefrom, but the data have been largely cleaned of
the confounding MR-related artifacts.

Contrary to prior research, we found MRI sequence artifacts in simultaneously collected EDA
recordings, both during multiband single- and multi-echo BOLD EPI sequences, but not during a
single-band, single-echo BOLD EPI sequence. These artifacts corresponded with the TR frequency,
likely related to the transmission of RF excitation pulses, and the gradient pulses during slice
collection. However, the relative power of these confounding frequencies did not differ between
MBSE-EDA and MBME-EDA, in contrast to those in the ECG signals (see Figure 2). Here, we
demonstrate that these artifacts can be removed in the same manner as from MBSE- and MBME-ECG
recordings with a IIR comb notch filter that removes a frequency band and its harmonics up to the
Nyquist frequency. However, given the relatively low frequency of biologically relevant, phasic EDA
signals, low-pass filtering may provide a simpler approach for commensurate improvements in signal
quality.

Confounding frequencies corresponding with the TR of the sequence were detected via comparison of
the power spectra of ECG and EDA recordings before and during a MBME BOLD EPI sequence, to a
lesser extent during a MBSE BOLD EPI sequence, and not at all during a SBSE BOLD EPI sequence.
This frequency is not often mentioned in the simultaneous physiology-fMRI literature as RF
pulse-related artifacts are either of a much lesser amplitude than other MR-artifacts or they are filtered
out entirely by MRI-specific amplifiers (see Figure 1 for comparison) (47, 48). However, the RF
excitation that precedes slice collection in multiband MRI pulse sequences has a higher amplitude
and/or greater total power than that of a single-band sequence. This increased power may explain
why the artifact is seen here, in frequency bands corresponding with the sequence TR, but not usually
seen in physiological recordings collected simultaneously with single-band BOLD sequences and is
not mentioned in prior simultaneous ECG- or EDA-fMRI research or the associated manufacturer
recommendations for signal cleaning.

The confounding fundamental frequency identified here corresponds with the slice collection or slice
repetition frequency (48). This artifact is more commonly seen in ECG recordings collected during
fMRI scans, though not in EDA recordings (46). The literature on simultaneous EEG-fMRI acquisition
and data cleaning suggests that the magnitude of artifacts due to electromotive force caused by
time-varying magnetic field gradients during slice acquisition far surpasses that of the RF excitation
pulse (48). While this artifact is seen in physiological recordings acquired during single-band BOLD
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sequences, as well, the power of the harmonics of this confounding frequency are much greater in
data collected during multiband BOLD sequences. Although slice collection in multi-echo GRE-EPI
sequences is more prolonged over the course of a timepoint of data acquisition, due to the acquisition
of multiple volumes of data per RF excitation pulse, the duration of slice collection is short (<75ms)
compared to the repetition time (1500ms). As such, the confounding frequency associated with
time-varying gradients is centered on the slice frequency ( slices / MB factor / TR) and confounding
frequencies associated with individual echoes were not observed. Notch filters centered at the slice
frequency and its harmonics sufficiently removed the artifact caused by shifting gradient fields.

Limitations and Considerations
The temporal resolutions of each electrophysiological (1000 - 10,000Hz) and fMRI (0.5 - 1.5Hz) data
complicate psychophysiological analyses. First, in relating physiological processes to BOLD signal
fluctuations, accounting for differences in the timing of individual slice collection, typically performed
in the beginning of fMRI preprocessing (49–51), becomes crucial. Second, physiological data should be
downsampled for such investigations. fMRI data are collected with a TR between 500ms and 3s and
while multiband acquisition can shorten TRs, multi-echo acquisition often lengthens TRs. When TRs
exceed 2 seconds, the temporal resolution of fMRI data becomes low enough to induce aliasing in
biologically-relevant frequency bands of physiological data downsampled to match. Researchers
should proceed with caution when this is the case. Further, future work should consider the
differential effects of MR-related artifacts across the spectrum of heart rate and examine potential
differences in filtering efficacy, signal quality, and potential impacts on fMRI results, especially given
known effects of heart rate on BOLD signal.

On another note, researchers collecting data regarding heart rate and cardiac pulsations can avoid MR
artifacts entirely by using a photoplethysmograph (PPG), which collects optical instead of electrical
measurements. Both ECG and PPG are used by the neuroimaging community and in a recent
mega-analysis of cardiac function and cortical thickness that pooled structural MRI and heart rate
data from 20 research groups, half of the groups used PPG to estimate heart rate; the other half, ECG
(52). Both ECG and PPG have strengths and weaknesses, however, and the choice between the two
depends on investigators’ intended use of the data. Cardiac data can be useful in mitigating the effect
of cardiac pulsations on the BOLD signal itself (i.e., for denoising fMRI data) or to investigate the
neural correlates of cardiac function. For denoising concurrently collected fMRI data using
approaches like RETROICOR (53) or DRIFTER (54), cardiac pulse estimates from either ECG or PPG
can be used. In this case, PPG has the advantage as its sensor is easier to place and its signal is less
susceptible to MR-induced artifacts (20). On the other hand, data from ECG and PPG are not equally
well-suited to some assessments of the neural bases of cardiac function. While they provide nearly
equivalent estimates of heart rate, PPG does not provide reliable estimates of heart rate variability
(55–58). Finally, while placement of a PPG sensor on the finger or foot is easier, quicker, and less
invasive than that of electrodes on the thorax, PPG is susceptible to motion-induced noise (59), which
is greater in some populations than others. Altogether, choice of PPG or ECG for cardiac monitoring
should depend on the data’s intended use and the concomitant MR sequence.

Finally, the findings presented here only reflect data collected on BIOPAC physiological monitoring
systems in SIEMENS MRI scanners. Future work should ascertain the efficacy of such filtering
approaches on data collected in other environments and by other systems.
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Conclusions
While MBSE and MBME pulse sequences introduce more complicated artifacts into simultaneously
acquired electrophysiological recordings than can be addressed with current manufacturer
recommendations, the data presented here suggest that these artifacts are predictable and their effects
can be greatly mitigated with notch filters centered at their fundamental frequencies and harmonics.
By targeting the slice acquisition frequency, updated to account for multiband factor, and, especially
in the case of MBME-simultaneous recordings, TR frequency, researchers should be able to remove
significant MR-related artifacts from ECG and EDA data collected during fMRI scans.
Recommendations such as those demonstrated here allow researchers to capitalize on the improved
SNR afforded by MBSE and MBME BOLD sequences, while including rich information concerning a
participant’s peripheral, visceral state.
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