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Denoising physiological data collected during 
multi-band, multi-echo EPI sequences
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ABSTRACT

Collecting physiological data during functional magnetic resonance imaging (fMRI) experiments can improve fMRI data cleaning 
and contribute to our understanding of psychophysiological processes; however, these recordings are frequently fraught with arti-
facts from the MRI pulse sequence. Here, we assess data from BIOPAC Systems, Inc., one of the most widely used manufacturers 
of physiological monitoring equipment, evaluate their recommendations for filtering such artifacts from electrocardiogram and 
electrodermal activity data collected during single-band, single-echo fMRI sequences, and extend these recommendations to 
address artifacts associated with multi-band, multi-echo fMRI sequences. While the magnitude and frequencies of artifacts differ 
with these aspects of pulse sequences, their effects can be mitigated via application of digital filters incorporating slice collection, 
multi-band factor, and repetition time. The implementation of these filters is provided both in interactive online notebooks and an 
open-source denoising tool.
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INTRODUCTION

Physiological recordings collected simultaneously during 
functional magnetic resonance imaging (fMRI) can add 
valuable information about a participant’s physical state 
and provide quantitative assessment of psychological 
phenomena. They offer the opportunity to study relations 
between the central and autonomic nervous systems that 
underlie cognition and behavior. For example, physiolog-
ical arousal has been assessed during fMRI using heart 
rate, via electrocardiogram (ECG) recordings and skin 
conductance, via electrodermal activity (EDA) record-
ings. Inclusion of such measures may enhance interpre-
tation of studies examining decision making (reviewed 
in (1), typical and disordered affective processing (2–5), 

pain (6–8), autonomic regulation (9–13)). Furthermore, 
heart rate has known effects on the blood-oxygenation 
level dependent (BOLD) signal (14–16) and plays a non-
trivial role in the emergence of large-scale functional 
brain networks (17). Thus, measures of heart rate play a 
role, too, in fMRI denoising (18–20).

Collecting electrophysiological recordings in the mag-
netic resonance (MR) environment add MR-induced ar-
tifacts to the recordings. Often, the magnitude of these 
MR artifacts is much larger than that of the phenomena 
of interest, necessitating additional data cleaning steps 
before such data can be used to assess psychophysiolog-
ical phenomena. Single-echo MRI sequences (Figure 1A)  
that measure the BOLD signal are the norm in fMRI re-
search. However, recent advances in MR technology and 
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denoising approaches are prompting researchers to 
increasingly turn to multi-echo sequences (Figure 1B), 
which offer better differentiation between BOLD signal 
and non-neural noise for improved estimates of brain 
activation (21–23). While these sequences arguably offer 
better quality fMRI data, they require more complex 
K-space sampling to collect multiple echoes, which intro-
duces added artifacts to simultaneously collected elec-
trophysiological recordings. Furthermore, adding echoes 
to an MRI sequence introduces further limitations on the 
temporal resolution of the sequence, requiring a longer 
repetition time (TR). Using multi-band or simultaneous 
multi-slice (SMS) excitation allows researchers to reduce 
the amount of time required to acquire a single volume, 
by acquiring several slices simultaneously, and effectively 
minimizing the multi-echo temporal constraints on TR. 
This is an important consideration for human fMRI stud-
ies, in which a study’s power to detect an effect is linearly 
related to the number of time points in a scan (24).

In addition to the technical challenges, neuroimag-
ing researchers who are new to physiological monitor-
ing likely encounter logistical and educational hurdles 
as well. There are several manufacturers that provide 
options for physiological monitoring in the MR envi-
ronment, including BIOPAC Systems, Inc. (Goleta, CA, 
United States), ADInstruments (Sydney, Australia), and 
the MRI scanner manufacturers themselves. While all 
provide MR-safe equipment for recording physiological 
data safely in the scanner, their resources are not widely 
available. Of these, BIOPAC is a popular choice among 
neuroimaging researchers and among the only manufac-
turers to offer recommendations for filtering MR-noise 
out of concurrently collected electrophysiological data. 
There is a growing need for transparent, open-source 

resources for integrating physiological data into neuro-
imaging research. Several such efforts are currently un-
derway, including NeuroKit (neuropsychology.github.
io/neurokit) and the Physiopy tool suite and associated 
community (github.com/physiopy). However, there re-
mains a gap where open tools and recommendations for 
filtering noise associated with MR-sequence specifics are 
concerned.

The present study assessed MR-artifact removal strat-
egies from electrophysiological (i.e., ECG and EDA) data 
collected during single- and multi-echo multi-band EPI 
scans, focusing on data collected with BIOPAC Systems 
and the manufacturer’s filtering recommendations. Our 
goals were to (1) compare MR-related noise from sin-
gle- and multi-echo EPI sequences, (2) assess current 
filtering recommendations in multi-band and multi-echo 
contexts, and (3) if current filtering recommendations 
appeared insufficient for removing MR-related artifacts 
from concurrent electrophysiological data, to redefine 
these recommendations accordingly. To achieve this, 
we used ECG and EDA data collected during both sin-
gle- and multi-echo, single- and multi-band BOLD EPI 
sequences, from three separate datasets. First, data 
were Fourier transformed to identify MR-artifact fre-
quencies, then digital filters were applied, and cleaned 
data were compared across the filtering process, both 
visually and quantitatively. We anticipated that MR arti-
facts would be greatest during multi-band, multi-echo 
EPI sequences and while current filtering recommenda-
tions would mitigate MR artifacts, adaptations may be 
necessary for multi-band and multi-echo pulse sequenc-
es. We expected that adaptations to the slice collection 
frequency would be necessary, to account for slices col-
lected in parallel. Finally, we make these findings openly 

Fig. 1. Schematic representation of (A) a single-band, single-echo GRE-EPI pulse sequence and (B) a multi-band, multi-echo GRE-EPI pulse sequence. RF pulse differ-
ences (25) are highlighted in the first row, while differences in time-varying gradient fields (26) are shown in the following three rows. NOTE: This schematic presents a gen-
eral example of differences between single-band, single-echo sequences and multi-band, multi-echo sequences and is not specific to those sequences described here.
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collected using radiotranslucent EL509 electrodes with 
GEL101 and LEAD108B leads, with an EDA100C-MRI am-
plifier. Leads were placed on the palm of the participant’s 
non-dominant hand, on the thenar and hypothenar emi-
nences. All physiological data were collected at a rate of 
2000 Hz, with ECG and EDA collected concurrently from 
all participants. Physiological data collection began once 
participants were loaded on the scanner bed and contin-
ued until the scanner bed exited the bore after the scan-
ning session, including several minutes per participant of 
data collected in the absence of an MR pulse sequence.

BOLD EPI sequences

Single-band, single-echo BOLD EPI sequence (Mather)

Physiological recordings were acquired in the bore of a 
whole-body 3-Tesla Siemens MAGNETOM Prisma with a 
32-channel head/neck coil during a single-band, single- 
echo (SBSE) BOLD echo planar imaging (EPI) sequence 
(Table 1, Mather). The SBSE sequence used here is a 
gradient-echo EPI sequence that acquired 41 axial slices 
using a single echo (TE = 25 ms) with TR = 2000 ms, no 
multi-band acceleration, interleaved acquisition, and a 
90º flip angle. Participants completed one 6-minute run 
of a fear conditioning task, and five runs of a spatial de-
tection task that each lasted 5:20.

Multi-band, single-echo BOLD EPI sequence (Musser)

Physiological recordings were acquired in the bore of 
a whole-body 3-Tesla Siemens MAGNETOM Prisma 
with a 32-channel head/neck coil, during both a multi-
band, single-echo (MBSE) BOLD EPI sequence (Table 1, 
Musser). The MBSE sequence used here is the one de-
veloped for and used by the Adolescent Brain Cognitive 
Development (ABCD)SM Study (30). In brief, this sequence 
acquired 60 transverse slices, with an anterior-to-posteri-
or phase encoding direction, using a single echo (TE = 
30 ms) with TR = 800 ms, a multi-band acceleration factor 
of 6, interleaved acquisition, in-plane GRAPPA acceler-
ation, and a 52º flip angle. More information about the 
scan protocols is available with the curated ABCD data 
via the NIMH Data Archive (NDA; https://abcdstudy.org/
scientists/protocols/). Participants completed four runs 
of an emotion regulation task (31–33) that each lasted 
5:35 and two 5-minute runs of rest.

Multi-band, multi-echo BOLD EPI sequence (DIVA)

Physiological recordings were acquired in the bore of 
a whole-body 3-Tesla Siemens MAGNETOM Prisma 
with a 32-channel head/neck coil during a multi-band, 
multi-echo (MBME) BOLD EPI sequence (Table 1, DIVA). 
The MBME BOLD EPI sequence used here is from the 
distribution of multi-band accelerated EPI sequenc-
es (Moeller et al., 2010) developed by the Center for 
Magnetic Resonance Research (CMRR) at the University 
of Minnesota. The MBME GRE-EPI sequence acquired 

available both as interactive online code and easy-to-use 
command-line software that is compatible with current 
data standards, sharing updated recommendations for 
removing MR artifacts from these physiological data in 
multi-band and multi-echo contexts.

METHODS

Data used here come from three separate studies. The 
first is a larger study of younger and older adults (N = 
52: 26 younger (i.e., aged 13–34 years; nine female) and 
26 older (i.e., aged 55–75 years; nine female)) collected 
at the University of Southern California, Dana and David 
Dornsife Neuroimaging Center (hereafter the Mather 
dataset; https://doi.org/10.18112/openneuro.ds001242.
v1.0.0 (27–29)). Including electrocardiogram (ECG) 
and electrodermal activity (EDA) data collected during 
single-band, single-echo BOLD fMRI scans. The sec-
ond and third are two pilot studies collected at Florida 
International University’s Center for Imaging Science: 
one of children that includes ECG and EDA data collect-
ed during multi-band, single-echo BOLD fMRI scans (N 
= 2, male, aged 9 years; hereafter the Musser dataset) 
and one of adults that includes ECG and EDA data col-
lected during multi-band, multi-echo BOLD fMRI scans 
(N = 5, all female, aged 26–39 years; hereafter, the DIVA 
dataset; https://doi.org/10.18112/openneuro.ds002278.
v1.0.1). More information about the physiological data 
and concurrent BOLD fMRI sequences for each study is 
provided below.

Physiological recordings

Physiological data for the Mather dataset were acquired 
using MRI-compatible modules, leads, and electrodes 
from BIOPAC Systems. Data were acquired using a 
BIOPAC MP150 system, connected to subject leads. 
Electrocardiogram (ECG) recordings were collected 
using radiotranslucent EL508 electrodes with GEL100 
and LEAD108 leads, with an ECG100C-MRI amplifier 
(27). Physiological data for the Musser and DIVA datasets 
were acquired using MRI-compatible modules, leads, 
and electrodes from BIOPAC Systems. Data were ac-
quired using a BIOPAC MP150 system, connected to sub-
ject leads by two standard MEC-MRI cables that passed 
through the MRI patch panel via MRI-RFIF filters and ran 
without loops to the bore, then parallel with the sub-
ject. Electrocardiogram (ECG) recordings were collected 
using radiotranslucent EL508 electrodes with GEL100 
and 15-cm long LEAD108B leads, with an ECG100C-
MRI amplifier. Electrodes were placed in a 3-lead bipolar 
monitoring configuration, 6 to 8 inches apart diagonally  
across the heart from right clavicle to left rib cage, with 
the ground placed 6 to 8 inches away on the right rib 
cage. Electrodermal activity (EDA) recordings were 

https://abcdstudy.org/scientists/protocols/
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BIOPAC filtering

First, we applied the manufacturer (i.e., BIOPAC) rec-
ommendation for single-band, single-echo sequences: 
comb band-stop filters at the slice collection frequen-
cy and its harmonics up to the Nyquist frequency, and 
then Fourier transformed the results to assess how these 
filters mitigated artifacts. This slice collection frequency 
is defined as:

vslice collection = number of slices ÷ TR Eq. 1

Here, comb band-stop filters were implemented as in-
finite impulse response (IIR) comb notch filters to account 
for the fundamental frequency and its harmonics. These 
filters were then applied to the raw recordings, and the 
resulting filtered signal was Fourier transformed.

Bottenhorn filtering

Here, we present an update to this calculation, adjust-
ing the slice collection frequency to account for the ad-
ditional artifacts identified in frequency spectra due to 
multi-band slice acquisition (Eq. 2).

vslice collection = number of slices ÷ MB factor ÷ TR  Eq. 2

Again, comb band-stop filters were implemented as IIR 
comb notch filters with this adjusted slice frequency. 
These filters were then applied to the raw recordings, 
and the resulting filtered signal was Fourier transformed. 
Further, additional IIR notch filters centered at the TR fre-
quency were implemented and applied to mitigate the 
effects of additional confounding frequencies present in 
MBME-ECG recordings.

Denoising assessments

The quality of ECG data was estimated before and after 
filtering using two automated approaches: kurtosis and a 

48 slices at a 30º transverse-to-coronal orientation with 
anterior-to-posterior phase encoding direction at each 
of four echoes (TE1 = 11.80 ms, TE2 = 28.04 ms, TE3 = 
44.28 ms, TE4 = 60.52 ms) with TR = 1500 ms, a multi-band 
acceleration factor of 3, interleaved acquisition, in-plane 
GRAPPA acceleration, a 77º flip angle, and an excite pulse 
duration of 2560 µs (Figure 1B). Participants complet-
ed six runs, 6 to 11 minutes each, of film watching (34), 
two runs of the same emotion regulation task (35), two 
runs of a probabilistic selection task, one 6 minutes and 
the other 9 minutes (36), and two runs of 5 minutes of 
rest. The full parameters and fMRI data are available on 
OpenNeuro.org (https://openneuro.org/datasets/ds002 
278/versions/1.0.1).

Software tools

All codes used to create and apply these filters were 
available on GitHub (https://github.com/62442katieb/
mbme-physio-denoising) and were written and run using 
Python 3.7.3. The bioread library (https://github.com/
uwmadison-chm/bioread, v. 1.0.4) was used to read in 
physiological recordings stored in AcqKnowledge for-
mat, data were manipulated using Pandas (https://pan-
das.pydata.org/, v. 1.0.3), digital filters were created 
and applied using SciPy (https://www.scipy.org, v. 1.9.0 
(37)), and fast Fourier transforms implemented in NumPy 
(https://numpy.org/, v. 1.18.2 (38)).

Denoising electrocardiogram recordings

Fourier transform was applied to ECG and EDA data col-
lected both in the presence and absence of MR pulse 
sequences to identify the frequencies of MR-related ar-
tifacts. Then, the same for each the ECG and EDA data, 
we applied digital filters to mitigate the effects of these 
artifacts on the recordings.

Table 1. BOLD sequence parameters for each dataset.

Parameter Mather Musser DIVA

TR/TE(s) 2000 ms / 25 ms 800 ms / 30 ms 1500 ms / [11.80 ms, 28.04 ms, 44.28 ms, 60.52 ms]

Voxel size 4.0 mm isotropic 2.4 mm isotropic 2.5 mm isotropic

FOV 256 mm 216 mm 216 mm

No. of slices 41 60 48

MB factor – 6 3

Slice acquisition Interleaved Interleaved Interleaved

Parallel imaging None GRAPPA = 2

Flip angle 90º 52º 77º

Excite pulse duration NA 2560 µs

Slice orientation Axial Transverse 30º transverse to coronal

Encoding direction A >> P A >> P

Number of volumes Fear conditioning: 180 Emotion regulation: 4 × 450 Varies per participant

Spatial detection: 5 × 160 Rest: 2 × 419

https://openneuro.org/datasets/ds002278/versions/1.0.1
https://openneuro.org/datasets/ds002278/versions/1.0.1
https://github.com/62442katieb/mbme-physio-denoising
https://github.com/62442katieb/mbme-physio-denoising
https://github.com/uwmadison-chm/bioread
https://github.com/uwmadison-chm/bioread
https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.scipy.org/
https://numpy.org/
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of frequencies between two signals. Here, we use Welch’s 
method ((45); Eq. 3), as implemented in SciPy (v1.9.0):

=C
P

P Pxy
xy

xx yy

2

 Eq. 3

where Pxy is the cross-spectral density estimate of signals 
x and y; Pxx and Pyy are the power spectral densities of x 
and y, respectively.

This allowed a direct comparison of frequency spec-
tra between (i) filtering approaches, between (ii) filtered 
recordings and unfiltered recordings, and between (iii) 
filtered recordings and recordings in the absence of EPI 
sequences. In this case, these comparisons show which 
frequencies have been removed between filtering steps 
(low Cxy) and which frequencies remain (high Cxy).

RESULTS

Frequencies of MR-related artifacts

Comparing Fourier transforms to ECG recordings in both 
the absence (Figure 2, first row) and presence (Figure 2, 
second row) of single-band single-echo (Figure 2, left col-
umn), multi-band multi-echo (Figure 2, center column), 
and multi-band multi-echo (Figure 2, right column) BOLD 

heuristic-based signal quality index (SQI) (39). Kurtosis has 
been previously used and evaluated as an SQI for ECG 
data (40, 41), such that higher kurtosis is indicative of high-
er quality. Kurtosis was calculated using Fisher’s definition, 
as applied by the Pandas Python package (v. 1.0.5) (42, 43). 
Wilcoxon signed-rank tests were used to compare kurtosis 
between raw and filtered data. The heuristic quality index 
(hereafter Zhao heuristic) delineates between “unaccept-
able,” “barely acceptable,” and “excellent” quality ECG 
signals by performing a fuzzy comprehensive evaluation 
of four SQIs: R-peak detection, QRS wave power spec-
trum distribution, kurtosis, and baseline relative power. 
The Zhao heuristic was computed by the ECG quality 
function from NeuroKit2 (https://neuropsychology.github.
io/NeuroKit/ (44)), which calculates the four SQIs and syn-
thesizes them into a single quality estimate as described 
in detail by Zhao and Zhang (39). Chi-squared tests were 
used to compare heuristic frequencies between filtering 
approaches.

Finally, physiological data were compared across steps 
and with data collected in the absence of MR pulse se-
quences, using magnitude-squared coherence to assess 
linear dependence across the frequency band in which 
physiologically relevant signals were found: 0.5 to 50 Hz 
for ECG and <0.5 Hz for EDA. Magnitude-squared co-
herence (Cxy) measures the linear dependence between 
two vectors (x, y) and can be used to assess the similarity 

Fig 2. Electrocardiogram recordings through the denoising process. ECG during single-band, single-echo (SBSE) BOLD EPI sequence: (A) Six seconds of ECG recording 
during a single-band, single-echo BOLD EPI sequence and (B) the Fourier transform of that recording. (C) Six seconds of ECG recordings during a single-band, single-echo 
BOLD EPI sequence and (D) the Fourier transform of that recording, demonstrating sequence-related artifacts at the slice frequency (green circles) and TR frequency (pink 
triangles), and their harmonics. ECG during multi-band, single-echo (MBSE) BOLD EPI sequence: (E) Six seconds of ECG recordings before the EPI sequence started, after 
the participant was moved into the scanner bore and (F) the associated power spectrum, which shows remaining MR-related artifacts after filtering. (G) Six seconds of ECG 
recordings during a multi-band, single-echo BOLD EPI sequence and (H) the Fourier transform of that recording, demonstrating sequence-related artifacts at the slice fre-
quency (green circles) and TR frequency (pink triangles), and their harmonics. (I) The same 6 seconds of ECG recordings, following application of IIR notch filters to remove 
the MR-related artifacts, per manufacturer recommendations and (J) the associated power spectrum, which shows remaining MR-related artifacts after filtering. (K) The 
same 6 seconds, following application of IIR notch filters updated for multi-band acquisition and (L) the associated power spectrum, displaying mitigated artifacts but not 
complete removal. ECG during multi-band, multi-echo (MBME) BOLD EPI sequence: (M) 6 seconds of ECG recordings from an individual in the MR environment prior to 
scanning with a BOLD EPI sequence and (N) the power spectrum of that pre-EPI recording. (O) 6 seconds of ECG recordings from the same individual and scanning session 
during a multi-band, multi-echo BOLD EPI sequence data and (P) the power spectrum of that ECG recording, demonstrating MR-related artifacts at the slice frequency 
(green circles) and TR frequency (pink triangles), and their harmonics. (Q) The same 6 seconds of ECG recording, following the application of BIOPAC-recommended filters 
and (R) the Fourier transform of that recording, displaying the remaining MR-related artifacts. (S) The same 6 seconds of ECG recording, following the application of IIR 
notch filters at the slice and TR frequencies and (T) the Fourier transform of that cleaned recording, displaying the relative absence of MR-related artifacts. NOTE: Power 
spectra (i.e., plots of signal Fourier transforms) y-axes are log10-scaled.

https://neuropsychology.github.io/NeuroKit/
https://neuropsychology.github.io/NeuroKit/
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resulted in an incomplete mitigation of MR-related arti-
facts, which are still clearly present in the frequency spec-
tra (Figure 2F, N). However, the adjusted slice frequency, 
and in the case of MB-ECG data at TR frequency, filters 
mitigated the effects of the identified MR scanner noise 
in both MBSE- and MBME-ECG recordings, per visual in-
spection of the power spectra (Figure 2H, P).

Denoising electrodermal activity recordings

Prior research on EDA recordings collected during 
single-band, single-echo BOLD sequences has shown 
minimal MR-related artifacts in EDA data (46). As such, 
EDA recordings collected simultaneously with fMRI 
data do not typically require MR-specific denoising. 
The EDA recordings acquired during a single-band, 
single-echo BOLD EPI sequence (hereafter SBSE-EDA) 
included here (Figure 3A, B) support this idea, showing 
minimal MR-related artifacts and, instead, induced ar-
tifacts following filtering (Figure 3C, D). On the other 
hand, a Fourier transform of EDA recordings acquired 
during the multi-band, single-echo BOLD EPI sequence 
(hereafter MBSE-EDA) in question revealed noise in se-
quence-specific frequency bands (Figure 3G, H) corre-
sponding to the harmonics of the TR frequency (pink 
triangles) and, to a lesser extent, the slice collection fre-
quency (green circles).

EPI sequences (hereafter SBSE-ECG, MBSE-ECG, and 
MBME-ECG, respectively) revealed MR-related noise in 
frequencies corresponding to the TR and slice acquisi-
tion. This noise demonstrated greater spectral power in 
recordings collected during multi-echo sequences than 
during single-echo sequences (Figure 2D vs. 2L). The 
presence and relative impacts of this noise are visually ap-
parent in the difference between recordings collected be-
fore and during the two BOLD EPI sequences in Figure 2 
(MBSE-ECG in 2A vs. 2C; MBME-ECG in 2I vs. 2K) and ev-
idenced by greater power in the frequencies correspond-
ing with TR and slice acquisition than with biologically 
relevant signals (MBSE-ECG in 2B vs. 2D; MBME-ECG, 
2J vs. 2L). These artifacts occur at frequencies equal to 
(a) the multi-band slice frequency, which is equal to the 
number of slices divided by the multi-band factor per 
TR (indicated by circular, blue-green markers), (b) the TR  
frequency (indicated by triangular, pink markers), and (c) 
the harmonics of these frequencies. Furthermore, the 
power of these confounding signals was much greater 
than in MBSE-ECG recordings and caused greater cor-
ruption of the ECG signal (Figure 2C vs. 2K).

Denoising electrocardiogram recordings

BIOPAC-recommended filtering applied to SBSE-, 
MBSE-, and MBME-ECG recordings, via IIR notch filters, 

Fig 3.  Electrodermal activity recordings through the denoising process. EDA during single-band, single-echo (SBSE) BOLD EPI sequence: (A) Six seconds of EDA 
recording during a single-band, single-echo BOLD EPI sequence and (B) the Fourier transform of that recording. (C) Six seconds of EDA recordings during a single-band, 
single-echo BOLD EPI sequence and (D) the Fourier transform of that recording, demonstrating sequence-related artifacts at the slice frequency (green circles) and 
TR frequency (pink triangles), and their harmonics. EDA during multi-band, single-echo (MBSE) BOLD EPI sequence: (E) Six seconds of EDA recordings before the EPI 
sequence started, after the participant was moved into the scanner bore and (F) the associated power spectrum, which shows remaining MR-related artifacts after filter-
ing. (G) Six seconds of EDA recordings during a multi-band, single-echo BOLD EPI sequence and (H) the Fourier transform of that recording. (I) The same 6 seconds of 
EDA recordings, following application of IIR notch filters to remove the MR-related artifacts, per manufacturer recommendations and (J) the associated power spectrum, 
which shows remaining MR-related artifacts after filtering. (K) The same 6 seconds, following application of IIR notch filters updated for multi-band acquisition and (L) the 
associated power spectrum, displaying mitigated artifacts, but not complete removal. EDA during multi-band, multi-echo (MBME) BOLD EPI sequence: (M) 6 seconds 
of EDA recordings from an individual in the MR environment prior to scanning with a BOLD EPI sequence and (N) the power spectrum of that pre-EPI recording. (O) 6 
seconds of EDA recordings from the same individual and scanning session during a multi-band, multi-echo BOLD EPI sequence data and (P) the power spectrum of that 
EDA recordings. (Q) The same 6 seconds of EDA recording, following the application of BIOPAC-recommended filtersand (R) the Fourier transform of that recording, 
displaying the remaining MR-related artifacts. (S) The same 6 seconds of EDA recording, following the application of IIR notch filters at the slice and TR frequencies and 
(T) the Fourier transform of that cleaned recording, displaying the relative absence of MR-related artifacts. NOTE: Power spectra (i.e., plots of signal Fourier transforms) 
y-axes are log10-scaled.
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Across raw and filtered SBSE-, MBSE-, and MBME-EDA 
data, magnitude-squared coherence demonstrated the 
efficacy of each filter in removing the desired frequen-
cies from the signals. Overall, this supports the claim in 
prior research that the impacts of MR-related artifacts on 
simultaneously collected EDA recordings are minimal, al-
though not nonexistent.

Research products

The workflows used to clean these data and create the asso-
ciated figures are available as a command-line Python script 
and in interactive Jupyter Notebooks available at: https://
github.com/62442katieb/mbme-physio-denoising/.

These notebooks are additionally available, inter-
actively, at: https://mybinder.org/v2/gh/62442katieb/
mbme-physio-denoising/binder-live.

DISCUSSION

Here, we assessed the confounding influence of both 
single- and multi-band, single-echo, and multi-echo 
BOLD MRI sequences on simultaneously acquired pe-
ripheral physiological recordings (i.e., ECG and EDA). 
These artifacts were demonstrated in recordings col-
lected over the course of several MRI scans, comparing 
those of a SBSE BOLD EPI scan (i.e., from the Mather 
dataset) with those of a MBSE BOLD EPI sequence with 
a multi-band factor of six (i.e., from the Musser dataset) 
and a MBME BOLD EPI sequence that acquired four vol-
umes per RF excitation with a multi-band factor of three 
(i.e., from the DIVA dataset). Two fundamental confound-
ing frequencies were identified, corresponding with the 
slice frequency and the repetition time of the MRI se-
quence, with notably greater power in the MBSE and 
MBME sequences, compared with the SBSE sequence. 

Quantitative assessments of denoised data

Filtering approaches differentially impacted the quality 
of ECG recordings across the three datasets included 
here. BIOPAC-recommended filtering did not significant-
ly improve ECG signal quality across the Mather (Table 2, 
SBSE-ECG), Musser (Table 2, MBSE-ECG), or DIVA (Table 
2, MBME-ECG) datasets, according to any of the included 
metrics. The updated filtering recommendations present-
ed here (Table 2, Bottenhorn) significantly improved ECG 
signal quality in MBSE- and MBME-ECG data compared 
with the signal filtered per BIOPAC recommendations but 
not compared with the raw signal. However, visual inspec-
tion of the example signals in (Figure 2) across filtering 
approaches show a mitigation of MR-associated noise 
and, in the case of MBME-ECG data, increased R-peak 
amplitude compared with the surrounding noise. Thus, 
while the updated filtering recommendations might not 
objectively improve signal quality, they might still benefit 
researchers interested in computing heart rate or vari-
ability therein. For distributions of each quality index 
and heart rate estimates across datasets and filtering ap-
proaches, see Supplementary Figure 1.

Magnitude-squared coherence (i.e., linear dependence 
or signal similarity across frequencies) of ECG recordings 
across the filtering approaches described above demon-
strated the efficacy of applied notch filters in removing the 
targeted frequencies from ECG recordings. Linear depen-
dence between ECG recordings collected in the absence 
of either a single- or multi-echo multi-band BOLD EPI se-
quence and recordings collected during those sequences 
was near zero across biologically relevant frequencies. On 
the other hand, magnitude-squared coherence of EDA 
recordings collected before and during BOLD EPI se-
quences, and across filtering approaches indicate greater 
linear dependence between signals collected in the ab-
sence of BOLD EPI sequence and those collected during 
multi-echo than during single-echo BOLD EPI sequence. 

Table 2. Signal quality across filtering approaches, averaged across participants, runs, and sessions.

Raw BIOPAC Bottenhorn Raw < BIOPAC Raw < Bottenhorn BIOPAC < Bottenhorn

SBSE-ECG

Kurtosis 8.14 ± 17.34 8.07 ± 17.07 – p = 0.99 – –

Zhao 44 / 162 / 97 42 / 164 / 97 – p = 0.94 – –

MBSE-ECG

Kurtosis 12.75 ± 10.13 10.75 ± 10.00 12.79 ± 12.4 p = 1.0 p = 0.70 p = 0.0007

Zhao 0 / 0 / 12 1 / 7 / 4 0 / 3 / 9 – – –

MBME-ECG

Kurtosis
2.07 ± 1.99
(2.08 ± 2.02)

1.68 ± 2.09
(1.69 ± 2.12)

6.04 ± 22.85*
(2.11 ± 2.07)

p =1.0 p = 0.78 p = 0.007

(p = 1.0) (p = 0.08) (p = 0.025)

Zhao
0 / 123 / 13
(0 / 119 / 13)

0 / 123 / 13
(0 / 119 / 13)

0 / 116 / 20
(0 / 116 / 16)

–
p = 0.09
(p = 0.38)

p = 0.09
(p = 0.42)

Note: Zhao heuristics are represented as “unacceptable,” “barely acceptable,” and “excellent.” Bold indicates significantly greater quality index across participants, runs, 
and sessions (where applicable) at α < 0.05, per 1-tailed Wilcoxon signed-rank test. *In the MBME-ECG data one participant’s last four scans demonstrated outlier kurtosis 
values by an order of magnitude after Bottenhorn filtering. Values in parentheses represent the metrics and comparison p values after removing those runs from analysis.

https://github.com/62442katieb/mbme-physio-denoising/
https://github.com/62442katieb/mbme-physio-denoising/
https://mybinder.org/v2/gh/62442katieb/mbme-physio-denoising/binder-live
https://mybinder.org/v2/gh/62442katieb/mbme-physio-denoising/binder-live


 : 2023, Volume 3 - 8 - CC By 4.0: © Bottenhorn et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

Confounding frequencies corresponding with the TR 
of the sequence were detected via comparison of the 
power spectra of ECG and EDA recordings before and 
during a MBME BOLD EPI sequence, to a lesser extent 
during a MBSE BOLD EPI sequence, and not at all during 
a SBSE BOLD EPI sequence. This frequency is not often 
mentioned in the simultaneous physiology-fMRI literature 
as RF pulse-related artifacts are either of a much lesser 
amplitude than other MR artifacts, or they are filtered out 
entirely by MRI-specific amplifiers (see Figure 1 for com-
parison) (47, 48). However, the RF excitation that precedes 
slice collection in multi-band MRI pulse sequences has a 
higher amplitude and/or greater total power than that of a 
single-band sequence. This increased power may explain 
why the artifact is seen here, in frequency bands corre-
sponding with the sequence TR, but not usually seen in 
physiological recordings collected simultaneously with sin-
gle-band BOLD sequences and is not mentioned in prior 
simultaneous ECG- or EDA-fMRI research or the associ-
ated manufacturer recommendations for signal cleaning.

The confounding fundamental frequency identified 
here corresponds with the slice collection or slice repeti-
tion frequency (48). This artifact is more commonly seen 
in ECG recordings collected during fMRI scans, though 
not in EDA recordings (46). The literature on simultane-
ous EEG-fMRI acquisition and data cleaning suggests 
that the magnitude of artifacts due to electromotive force 
caused by time-varying magnetic field gradients during 
slice acquisition far surpasses that of the RF excitation 
pulse (48). While this artifact is seen in physiological re-
cordings acquired during single-band BOLD sequences, 
as well, the power of the harmonics of this confounding 
frequency are much greater in data collected during 
multi-band BOLD sequences. Although slice collection in 
multi-echo GRE-EPI sequences is more prolonged over 
the course of a time point of data acquisition, due to the 
acquisition of multiple volumes of data per RF excitation 
pulse, the duration of slice collection is short (<75 ms) 
compared with the repetition time (1500 ms). As such, 
the confounding frequency associated with time-varying 
gradients is centered on the slice frequency (slices / MB 
factor / TR) and confounding frequencies associated with 
individual echoes were not observed. Notch filters cen-
tered at the slice frequency and its harmonics sufficiently 
removed the artifact caused by shifting gradient fields.

Limitations and considerations

The temporal resolutions of each electrophysiological 
(1000–10,000 Hz) and fMRI (0.5–1.5 Hz) data complicate 
psychophysiological analyses. First, in relating physiolog-
ical processes to BOLD signal fluctuations, accounting 
for differences in the timing of individual slice collection, 
typically performed in the beginning of fMRI preprocess-
ing (49–51), becomes crucial. Second, physiological data 
should be downsampled for such investigations. fMRI 
data are collected with a TR between 500 milliseconds 

Applying a series of notch filters centered at frequencies 
corresponding to the sequence’s TR and slice collection 
frequency, approximating a comb band-stop filter (per 
manufacturer (i.e., BIOPAC) recommendations) provid-
ed marked decrease of confounding signals. Based on 
this, we present an updated set of recommendations for 
mitigation of pulse sequence-related artifacts in ECG 
and EDA recordings collected during multi-band BOLD 
MRI scans. These recommendations make it easier for 
researchers to include physiological recordings during 
functional MRI studies that capitalize on the improved 
temporal signal-to-noise ratio (tSNR) of multi-echo pulse 
sequences and the improvements to temporal resolution 
made possible by simultaneous multi-slice acquisition. 
While we did not test these recommendations across 
a range of pulse sequences with different numbers of 
echoes and multi-band factors, it is likely that our rec-
ommendations will generalize across MBME BOLD EPI 
sequences due to the linear relationship between con-
founding frequency bands and the sequence’s TR and 
multi-band factor.

Building on prior research, we found MRI sequence 
artifacts in simultaneously collected ECG recordings in 
frequency bands correspond to the number of asynchro-
nously collected slices (i.e., the number of slices divided by 
the multi-band factor). Furthermore, these confounding 
frequencies were of greater power in recordings collect-
ed during multi-echo BOLD EPI scans than during single- 
echo. The impact of these corrupting frequencies can be 
removed with a series of IIR notch filters corresponding to 
the TR and slice collection frequencies and their harmon-
ics up to the Nyquist frequency. This approach imparts 
greater increases in R-peak discriminability, though not 
necessarily objective signal quality indices, to data collect-
ed during multi-band, single-echo EPI scans than during 
multi-band, multi-echo EPI scans. Further processing is 
needed in order to distinguish moment-to-moment heart 
rate and data derived therefrom, but the data have been 
largely cleaned of the confounding MR-related artifacts.

Contrary to prior research, we found MRI sequence ar-
tifacts in simultaneously collected EDA recordings, both 
during multi-band single- and multi-echo BOLD EPI se-
quences, but not during a single-band, single-echo BOLD 
EPI sequence. These artifacts corresponded with the TR 
frequency, likely related to the transmission of RF exci-
tation pulses, and the gradient pulses during slice col-
lection. However, the relative power of these confound-
ing frequencies did not differ between MBSE-EDA and 
MBME-EDA, in contrast to those in the ECG signals (see 
Figure 2). Here, we demonstrate that these artifacts can be 
removed in the same manner as from MBSE- and MBME-
ECG recordings with a IIR comb notch filter that removes 
a frequency band and its harmonics up to the Nyquist 
frequency. However, given the relatively low frequency 
of biologically relevant, phasic EDA signals, low-pass  
filtering may provide a simpler approach for commensu-
rate improvements in signal quality.
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presented here suggest that these artifacts are predict-
able and their effects can be greatly mitigated with notch 
filters centered at their fundamental frequencies and 
harmonics. By targeting the slice acquisition frequency, 
updated to account for multi-band factor, and, especial-
ly in the case of MBME-simultaneous recordings, TR fre-
quency, researchers should be able to remove significant 
MR-related artifacts from ECG and EDA data collected 
during fMRI scans. Recommendations such as those 
demonstrated here allow researchers to capitalize on the 
improved SNR afforded by MBSE and MBME BOLD se-
quences, while including rich information concerning a 
participant’s peripheral, visceral state.
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