
Environment International 189 (2024) 108769

Available online 27 May 2024
0160-4120/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Full length article 

Air pollution from biomass burning disrupts early adolescent cortical 
microarchitecture development 

Katherine L. Bottenhorn a,b,*, Kirthana Sukumaran a, Carlos Cardenas-Iniguez a, Rima Habre a,c, 
Joel Schwartz d, Jiu-Chiuan Chen a,e, Megan M. Herting a,* 

a Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA 
b Department of Psychology, Florida International University, Miami, FL, USA 
c Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA 
d Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA 
e Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA   

A R T I C L E  I N F O   

Handling Editor: Hanna Boogaard  

Keywords: 
Air pollution 
Neurodevelopment 
PM2.5 sources 
Restriction spectrum imaging 
Adolescence 

A B S T R A C T   

Exposure to outdoor particulate matter (PM2.5) represents a ubiquitous threat to human health, and particularly 
the neurotoxic effects of PM2.5 from multiple sources may disrupt neurodevelopment. Studies addressing neu-
rodevelopmental implications of PM exposure have been limited by small, geographically limited samples and 
largely focus either on macroscale cortical morphology or postmortem histological staining and total PM mass. 
Here, we leverage residentially assigned exposure to six, data-driven sources of PM2.5 and neuroimaging data 
from the longitudinal Adolescent Brain Cognitive Development Study (ABCD Study®), collected from 21 
different recruitment sites across the United States. To contribute an interpretable and actionable assessment of 
the role of air pollution in the developing brain, we identified alterations in cortical microstructure development 
associated with exposure to specific sources of PM2.5 using multivariate, partial least squares analyses. Specif-
ically, average annual exposure (i.e., at ages 8–10 years) to PM2.5 from biomass burning was related to differ-
ences in neurite development across the cortex between 9 and 13 years of age.   

1. Introduction 

Outdoor air pollution and, in particular, exposure to fine particulate 
matter with aerodynamic diameter less than 2.5 µm (i.e., PM2.5), is 
among the greatest threats to human health due to its ubiquity and 
widespread effects (Cardenas-Iniguez et al., 2022; Costa et al., 2017; 
Genc et al., 2012). These effects are exacerbated in children (Brumberg 
et al., 2021), who have greater respiratory rates, are usually more 
physically active, and spend more time outdoors than adults, incurring 
greater dose and greater effect (Bateson and Schwartz, 2007). In addi-
tion to its neurotoxic effects, PM2.5 exposure has been associated with a 
number of poor behavioral outcomes, including increased depression 
and suicide risk (Braithwaite et al., 2019; Heo et al., 2021; Liu et al., 
2021), anxiety and psychosis (Newbury et al., 2021), and poor perfor-
mance on cognitive assessments (Allen et al., 2017b; Clifford et al., 
2016; Guxens et al., 2018, 2014), albeit findings are mixed (Essers et al., 
2023; Kusters et al., 2022). Together, the risk of PM2.5 exposure and 
breadth of potential neurodevelopmental consequences highlight the 

importance of leveraging novel neuroimaging methods to elucidate 
neurotoxicant effects of air pollution on the developing human brain. 
One challenge in this line of research is that PM2.5 is a complex mixture 
of chemical components (e.g., metals, nitrates, sulfates, carbons) arising 
from sources including anthropogenic human activities (e.g., traffic, 
industrial fuel burning), natural and meteorological events (e.g., wind-
blown dust, wildfires). The sources and composition of PM2.5 vary 
geographically (Snider et al., 2016) and can have different effects on 
human health (Chen et al., 2021a; Chung et al., 2015; Holguin, 2008; 
Kazemiparkouhi et al., 2022; Sarnat et al., 2008). Untangling the effects 
of different sources of PM2.5 (e.g., via data-driven source apportion-
ment) is important for understanding the effects of outdoor air pollution 
exposure on human health and neurodevelopment. Source apportion-
ment analyses can help provide insight as to the origins of outdoor 
PM2.5, which may be helpful in designing mitigation strategies and 
policies to improve air quality. Furthermore, it could inform future 
experimental designs to study the mechanisms of “real world” exposure 
settings (Godleski et al., 2011), while providing more precise estimates 
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of the global burden of disease associated with PM2.5 (McDuffie et al., 
2021). Overall, mapping neurotoxic effects of PM2.5 exposure to sources 
may facilitate a clearer picture of its neurodevelopmental impacts and 
provide actionable insights for researchers, parents, and policymakers. 

In addition to increased exposure, children are likely more suscep-
tible to longer-term effects of PM2.5 exposure when it affects their 
ongoing development. Brain development, in particular, follows a pro-
tracted course and continues into the third decade of life (Herting et al., 
2018, 2017; Herting and Sowell, 2017). The protracted course of brain 
maturation presents a large window of opportunity for air pollution and 
PM2.5 more specifically to impact neurodevelopment (Brockmeyer and 
d’Angiulli, 2016; Herting et al., 2019). Notably, neurotoxic effects of 
PM2.5 are thought to include cellular processes that are ongoing 
throughout childhood and early adolescence, including apoptosis (Wang 
et al., 2021), changes in dendritic spine density and arborization (Allen 
et al., 2017a; Fonken et al., 2011), neurogenesis (Woodward et al., 
2018), and microglial functioning (Allen et al., 2017a; Cardenas-Iniguez 
et al., 2022; Costa et al., 2017; Genc et al., 2012). Thus, it is crucial to 
consider not only individual differences in brain structure and function, 
but how developmental changes relate to different sources of PM2.5 
exposure, to better understand its neurodevelopmental effects. In this 
realm, most research to date has linked PM2.5 exposure to cross-sectional 
differences in cortical morphology, white matter microarchitecture, and 
subcortical microarchitecture. Urban air pollution, which includes 
PM2.5, exposure has been associated with increased white matter 
hyperintensities (Calderón-Garcidueñas et al., 2012, 2008), neuro-
vascular dysfunction and ultrafine particle deposition in the brain 
(Calderón-Garcidueñas et al., 2016, 2008), metabolic alterations 
(Calderón-Garcidueñas et al., 2015), and altered white matter micro-
architecture in children (Binter et al., 2022; Burnor et al., 2021; Huus-
konen et al., 2021). Thinner cortex and smaller subcortical volumes 
have been associated with greater exposure to ambient PM2.5, as well 
(de Prado Bert et al., 2018; Herting et al., 2019; Lubczyńska et al., 2021; 
Peterson et al., 2022). While exposure to PM2.5 has documented 
neurotoxic effects and there is substantial evidence of differential health 
effects between sources of PM2.5, little research has considered source- 
specific impacts on the brain. Thus, this work addresses two key gaps 
in our understanding of the neurodevelopmental implications of PM2.5 
exposure first, regarding impacts of exposure on cortical micro-
architecture changes and, second, regarding the implications of expo-
sure to different sources of PM2.5 for brain development. 

Fine PM, or PM2.5, can cross the blood brain barrier (Kang et al., 
2021) and, as previously mentioned, animal models have shown that it 
can induce various cellular processes including neuroinflammation, 
apoptosis, altered dendritic spine density and arborization, and neuro-
genesis (Cory-Slechta et al., 2023; Ferreira et al., 2022; Liu et al., 2023). 
Thus, it is feasible that exposure during development may not only 
impact morphology, but microstructural properties of cortical gray 
matter tissue. Given our understanding of the cellular impacts of PM in 
the brain, assessing gray matter microarchitecture could provide 
important neurobiological insight into in vivo impacts of PM exposure in 
humans. Two studies to date have linked PM2.5 exposure to subcortical 
gray matter microarchitecture using diffusion-weighted magnetic reso-
nance imaging (dMRI) approaches, revealing differences in the thal-
amus, brainstem, nucleus accumbens, and caudate nucleus (Peterson 
et al., 2022; Sukumaran et al., 2023). However, little is known about its 
effects on human cortical gray matter microarchitecture. Recent ad-
vances in dMRI facilitate multi-compartment, biophysical models that 
can provide more detailed estimates of cortical gray matter micro-
architecture (Martinez-Heras et al., 2021). Restriction spectrum imaging 
(RSI) takes advantage of multi-shell diffusion MRI data to separately 
model diffusion in intracellular and extracellular compartments (White 
et al., 2012). Within intracellular diffusion are anisotropic and isotropic 
components, that separately estimate cylindrical diffusion, along a pri-
mary axis or axes, and spherical diffusion, respectively. Further, histo-
logical validation has shown that intracellular RSI measures can provide 

estimates of cortical neurite (i.e., axon and dendrite) architecture and 
cellularity (White et al., 2012), and may be sensitive to neurobiological 
processes underlying development during late childhood and early 
adolescence (e.g., synaptic pruning, apoptosis) (Palmer et al., 2022). 
During early adolescence, neurite density, as indexed by anisotropic 
intracellular diffusion, largely decreases across the cortex, while cellu-
larity, as indexed by isotropic intracellular diffusion, largely increases 
(Bottenhorn et al., 2023). As the protracted nature of cortical develop-
ment creates the largest window of vulnerability to lasting neurotoxic 
effects of air pollution across the brain, such a perspective could provide 
important information regarding the translation of childhood exposure 
into lasting damage to brain and mental health. 

Here, we assess source-specific impacts of average annual PM2.5 
exposure on cortical microarchitecture changes in children between 
ages 9–10 years and two-years later from the longitudinal, nationwide 
Adolescent Brain Cognitive Development Study (ABCD Study®). The 
ABCD Study enrolled 11,881 children from 21 data collection sites 
across the United States and includes estimates of 15 chemical compo-
nents of PM2.5 linked to their residential addresses, with 50 m2 resolu-
tion in urban areas and 1 km2 resolution elsewhere. From these 
components, we used positive matrix factorization to identify six sources 
of PM2.5 (Sukumaran et al,. in preparation). We chose to assess how one- 
year average exposure to PM2.5 sources during childhood (i.e., between 
ages 8 and 10 years) were related to changes in cortical micro-
architecture between ages 9 and 13 years. Cortical microstructure was 
estimated from both anisotropic and isotropic intracellular diffusion, 
reflecting neurite density and cellularity, respectively (Carper et al., 
2017; Conley et al., 2021; Newman et al., 2023; Palmer et al., 2022; 
Rapuano et al., 2020), as hypothesized neurotoxic effects of PM2.5 likely 
include disruption to ongoing synaptic refinement during adolescence 
and altered cellularity due to neuron death and/or reactive gliosis. Using 
Partial Least Squares Correlation (PLSC), we jointly modeled latent di-
mensions of association between source-specific exposure to PM2.5 and 
changes in cortical microarchitecture. By investigating source-specific 
effects on these aspects of early adolescent neurodevelopment, this 
work aims to illuminate a more mechanistic and policy-relevant un-
derstanding of the developmental neurotoxicity of outdoor air pollution. 
We expect one or more sources of ambient air pollution to be associated 
with individual differences in cortical microarchitecture changes and 
that latent associations between sources of air pollution and cortical 
microstructure will likely include regions changing the most during this 
developmental period but vary across brain regions. 

2. Material and methods 

2.1. Participants 

Longitudinal data from the ongoing ABCD Study® were obtained 
from the annual 4.0 and 5.0 data releases (https://doi.org/10.15154/15 
23041; https://dx.doi.org/10.15154/8873-zj65; Supplementary 
Table 0). The ABCD Study enrolled over 11,800 children 9 to 10 years of 
age in a 10-year longitudinal study (Garavan et al., 2018). Participants 
were recruited at 21 study sites across the United States, largely from 
elementary schools (private, public, and charter schools) in a sampling 
design that aimed to represent the nationwide sociodemographic di-
versity (Casey et al., 2018). All experimental and consent procedures 
were approved by the institutional review board and human research 
protections programs at the University of California San Diego. Each 
participant provided written assent to participate in the study and their 
legal guardian provided written agreement to participate. Here, we use a 
subset of data from the ABCD Study, including magnetic resonance 
imaging (MRI), in addition to measures of participants’ sex at birth, 
socio-demographics, and air pollution exposure. Neuroimaging data 
include assessments from two time points: baseline enrollment and year 
2 follow-up. Sociodemographic and exposure data include assessments 
from the baseline time point. Exclusion criteria for the ABCD study 
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included lack of English proficiency, severe sensory, neurological, 
medical or intellectual limitations, and inability to complete an MRI 
scan. For more information, see Garavan et al. (2018) and Volkow et al. 
(Volkow et al., 2018). 

For this study, we further excluded participants whose 2-year follow- 
up visit occurred after shutdowns associated with the coronavirus 
pandemic (i.e., March 2020). Shutdowns in response to the COVID-19 
pandemic changed the air quality across the United States (Bekbulat 
et al., 2021; Chen et al., 2021b) while also disrupting the lives of youth. 
Imaging data was excluded if any of the following criteria were met: it 
had incidental neurological findings evident in their scans, failed the 
ABCD imaging or FreeSurfer quality control procedures (Hagler et al., 
2019), and/or was missing diffusion-weighted imaging data from either 
baseline or 2-year follow-up time point, or greater than 2.0 mm of head 
motion (i.e., framewise displacement) during a diffusion-weighted scan. 

2.2. Demographic data, confounders, & precision variables 

In terms of age, sex, and household size, the ABCD Study cohort 
closely matches the distribution of 9- and 10-year-olds in the American 
Community Survey (ACS), a large probability sample survey of U.S. 
households conducted annually by the U.S. Bureau of Census (Compton 
et al., 2019). The racial breakdown matches closely, too, although 
children of Asian, American Indian/Alaska Native and Native Hawaiian/ 
Pacific Islander ancestry are under-represented in ABCD (Heeringa and 
Berglund, 2020). Confounders and precision variables to be adjusted for 
in our analyses were identified using a directed acyclic graph (DAG; 
Supplementary Figure 1) (Shrier and Platt, 2008; Textor et al., 2016) 
constructed with theoretical knowledge of variables associated with 
brain development and air pollution exposure. From this DAG, a mini-
mally sufficient set of covariates were identified, which represent the 
smallest group of variables that can account for all paths by which the 
entire variable set may impact air pollution exposure based on the pri-
mary residential address and cortical microarchitecture development. 
Variables included the child’s age at baseline data collection (months), 
sex assigned at birth (male or female), caregiver-reported race/ethnicity 
(White, Black, Hispanic, Asian, or Other), and handedness (right, left, or 
mixed; (Oldfield, 1971; Veale, 2014)), average daily screen time (hours; 
(Paulich et al., 2021; Paulus et al., 2019)), physical activity (number of 
days child was physically active in the week prior; (Barch et al., 2018)), 
combined household income in USD (>100 K, 50–100 K, <50 K, or 
Don’t Know/Refuse to Answer), caregiver-reported perceived neighbor-
hood safety based on a survey modified from PhenX (NSC) (Echeverria 
et al., 2004; Mujahid et al., 2007), and the following information about 
the child’s primary residence: the population density (“Center for In-
ternational Earth Science Information Network,” n.d.; Fan et al., 2021), 
urbanicity (US Census Track Urban Classification), distance to major 
roadways (meters; (Fan et al., 2021)), and nighttime noise (i.e., average 
noise between the hours of 10:00 PM and 7:00 AM in decibels; (Mennitt 
et al., 2014)). The manufacturer of the MRI on which each participant’s 
data were collected and the average head motion (framewise displace-
ment, mm) throughout diffusion scans at each time point were included 
in the minimally sufficient set, as well. 

2.3. Neuroimaging data 

2.3.1. MRI: acquisition, processing, and quality control 
A harmonized data protocol was utilized across sites with either a 

Siemens, Phillips, or GE 3T MRI scanner (Casey et al., 2018). Motion 
compliance training, as well as real-time, prospective motion correction 
was used to reduce motion distortion (Casey et al., 2018). T1w images 
were acquired using a magnetization-prepared rapid acquisition 
gradient echo (MPRAGE) sequence and T2w images were obtained with 
a fast spin echo sequence with variable flip angle. Both consist of 176 
slices with 1 mm3 isotropic resolution. The DWI acquisition included a 
voxel size of 1.7 mm isotropic and implements multiband EPI with slice 

acceleration factor 3. Each DWI acquisition included a fieldmap scan for 
B0 distortion correction. ABCD employs a multi-shell diffusion acquisi-
tion protocol that includes 7b = 0 frames as well as 96 total diffusion 
directions at 4b-values (6 with b = 500 s/mm2, 15 with b = 1000 s/mm2, 
15 with b = 2000 s/mm2, and 60 with b = 3000 s/mm2). For more 
details on the scanning protocol, please see Casey et al. (2018). All im-
ages underwent distortion correction, bias field correction, motion 
correction, and manual and automated quality control per the steps 
detailed by Hagler and colleagues (2019). Only images without clini-
cally significant incidental findings (mrif_score = 1 or 2) that passed all 
ABCD Study quality-control parameters were included in analysis 
(imgincl_dmri_include = 1). For a more detailed description of diffusion 
data processing, please refer to recent work by Gorham & Barch and 
Hagler et al. (Gorham and Barch, 2020; Hagler et al., 2019). 

2.3.2. Restriction spectrum imaging (RSI) 
Restriction spectrum imaging (RSI) is an advanced modeling tech-

nique that utilizes all 96 directions collected as part of the ABCD Study’s 
multi-shell, high angular resolution imaging (HARDI) acquisition pro-
tocol. RSI provides detailed information regarding both the extracellular 
and intracellular compartments of white matter within the brain (White 
et al., 2014, 2013, 2012). RSI model outputs include normalized mea-
sures of intracellular (i.e., restricted), extracellular (i.e., hindered), and 
free water movement, all of which are on a unitless scale of 0 to 1. 
Restricted normalized isotropic signal fraction (RNI), or isotropic intra-
cellular diffusion, measures directionless water movement at short dis-
tances such that a higher RNI could indicate an increase in number of 
neuronal cell bodies (i.e., neurogenesis) and/or support cells or swelling 
of support cells, such as activated astrocytes or microglia as in neuro-
inflammation (Palmer et al., 2022). Restricted normalized directional 
signal fraction (RND), or anisotropic intracellular diffusion, measures 
directional water movement at short distances and likely indicates intra- 
neurite (i.e., axons and dendrites) diffusion, with higher RND indicating 
more myelination, axonal packing, and/or dendritic arborization 
(Palmer et al., 2022). Mean RSI measures are calculated for all cortical 
ROIs from the Desikan-Killiany atlas (Desikan et al., 2006) to provide 
estimates of cortical microarchitecture across the brain. 

2.3.3. Annualized percent change in cortical microarchitecture 
As previously published in greater detail, annualized percent change 

between baseline and 2-year follow up data collection time points was 
calculated to capture intra-individual changes in cortical micro-
architecture (Bottenhorn et al., 2023). 

Annualized percent change =

⎡

⎢
⎣

measureT2 − measureT1
(measureT2+measureT1)

2

⎤

⎥
⎦× 100

ageT2 − ageT1  

where Tt1 = time point 1 (i.e., baseline data collection visit, between 
ages 9–10 years) and Tt2 = time point 2 (i.e., 2-year follow-up visit, 
between ages 11–13 years). 

2.4. Particulate matter components and source groups 

The estimates of outdoor PM2.5 exposure represent averages over the 
initial year of ABCD Study data collection (i.e., 2016) and were compiled 
and linked based on participants’ residential addresses by the ABCD 
Study’s LED workgroup (Fan et al., 2021). At participants’ initial study 
visit, between October 2016 and October 2018, each participant’s 
caregiver reported their primary residential addresses, which were later 
geocoded to estimate environmental exposures, among other variables. 
Daily outdoor PM2.5 exposure was estimated in µg/m3 at 1 km2 resolu-
tion via novel, hybrid, machine-learning based, spatiotemporal models 
that leverage satellite-based aerosol optical depth observations, along 
with land-use regression and chemical transport model outputs (Di et al., 
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2019). These ensemble models included neural networks, random for-
est, and gradient boosting algorithms and were cross-validated with EPA 
measurements across the U.S., demonstrating excellent performance 
(spatial R2 = 0.89, spatial RMSE = 1.26 µg/m3, temporal R2 = 0.85) 
(Di, Amini, Shi, Kloog, Silvern, Kelly, Sabath, Choirat, Koutrakis, & 
Lyapustin, 2019). These daily exposures were, then, averaged over the 
first year of baseline data collection (2016) to estimate average annual 
exposure. A similar method was used to estimate 15 separate PM2.5 
components across the U.S. at a 50 m2 spatial resolution: elemental 
carbon (EC), organic carbon (OC), silicon (Si), potassium (K), calcium 
(Ca), bromine (Br), nitrate (NO3

− ), ammonium (NH4
+), sulfate (SO4

2− ), 
vanadium (V), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), and lead 
(Pb). Distributions of the mass concentrations for each component are 
available in Supplementary Figure 3, while pairwise Spearman corre-
lations between participant exposures to each of these components are 
available in Supplementary Figure 4. In estimating each component, 166 
predictors were used, including temporal and geographical information, 
observations from satellite (e.g., aerosol optical depth, nighttime lights, 
vegetation, water index) and meteorological data (e.g., humidity, tem-
perature, wind), emission sources or surrogates thereof (e.g., distance to 
power plants and highways, traffic counts) (Amini et al., 2022; Jin et al., 
2022). For model performance per component, see Supplementary 
Table 1. As part of a larger scope of ongoing work, we performed source 
apportionment on these annual estimates of PM2.5 components via 
positive matrix factorization (PMF) using the PMF tool developed and 
released by United States Environmental Protection Agency (EPA, v5.0) 
(Sukumaran et al., Under Review). Briefly, PMF decomposes the 15 
PM2.5 components into a predetermined number of sources (or factors), 
while constraining both the factors and components’ contributions to 
each factor to non-significantly negative (i.e. positive) values. When 
repeated across a range of potential solutions, evaluating model per-
formance with four to eight samples based on prior source apportion-
ment literature, PMF identified an optimal solution with 6 factors, or 
sources. These, corresponding with crustal materials (i.e., soil, dust; 
Factor 1: V, Si, Ca load highest), secondary ammonium sulfates (Factor 
2: SO4

2− , NH4
+, V), biomass burning (Factor 3: Br, K, OC), traffic emis-

sions (Factor 4: Fe, Cu, EC), secondary ammonium nitrates (Factor 5: 
NH4

+, NO3
− , SO4

2− ), and metals potentially from industrial and residential 
fuel burning (Factor 6: Pb, Zn, Ni, Cu) (Supplementary Figure 2). Dis-
tributions of participant source estimates per data acquisition site are 
displayed in Supplementary Figure 5, while pairwise Spearman corre-
lations between participants’ estimates between sources are provided in 
Supplementary Figure 6. This approach was performed with exposure 
estimates from participants across the 21 ABCD Study data collection 
sites across the U.S., for a data-driven analysis of common, shared PM2.5 
sources across the nation. These sources are comparable to those found 
in other published source apportionment studies using data from the U. 
S. (Rahman and Thurston, 2022; Sarnat et al., 2008). 

2.5. Analyses 

A data analysis plan was registered with the Open Science Frame-
work (OSF) and all code used to run these analyses is available on 
GitHub (Katie Bottenhorn, 2024). Here, we used our previously pub-
lished Partial Least Squares Correlation (PLSC; (Sukumaran et al., 
2023)) approach to study latent dimensions of associations between 
exposure to PM2.5 sources and cortical microarchitecture. 

After excluding individuals based on the previously mentioned MRI 
quality control criteria (see 2.1), the complete-case sample size for all 
analyses presented here was 4103 individuals (7334 individuals’ 2-year 
follow-up visit was prior to March 2020, 6230 individuals’ baseline and 
2-year follow-up dMRI data were of sufficient quality). Descriptive sta-
tistics were computed across the final dataset (Table 1), including mean 
and standard deviation for all continuous variables (i.e., age, screen 
time, physical activity, perceived neighborhood safety, population 
density, distance to major roadways, nighttime noise, exposure 

estimates, changes in intracellular diffusion, and head motion); mode, 
and distribution of all categorical variables (i.e., sex assigned at birth, 
race and ethnicity, handedness, household income, urbanicity). 

Prior to performing PSLC, the minimally sufficient set of covariates 
identified from the DAG were regressed out of both PM2.5 source esti-
mates and annualized percent changes in cortical microarchitecture 
using a linear model implemented in R (v4.2.0), as the PLSC package use 
here does not accommodate covariate regression. This model included 
participant age, sex, handedness, race/ethnicity, average physical ac-
tivity, average weekday and weekend screen time, in addition to data 
collection site, MRI manufacturer, average head motion during the 
dMRI scan, household income and their residential address’s proximity 
to major roadways, urbanicity, area population density, and average 
nighttime noise level. All following analyses were performed on the 
residuals from these regressions. 

Then, we used PLSC to identify latent dimensions of associations 
between PM2.5 sources and estimates of cortical gray matter 

Table 1 
Sample demographics, compared to those of the full ABCD Study.   

Full ABCD Study Final Sample*  

N % N % 

Sample size (Total N) 11,881 100 4103 34.5 % 
Age at baseline (months) 118.97 ± 7.50 119.26 ± 7.45 

Missing 41 <1% 0 0 % 
Time between visits (months) 24.47 ± 2.32 23.90 ± 1.68 
Sex (F) 5658 48 % 1943 47 % 

Missing 41 <1% 0 0 % 
Handedness (R) 9398 79 % 3287 80 % 
Race & Ethnicity     

Asian + Other 1493 13 % 450 11 % 
Hispanic 2405 20 % 766 19 % 
Black 1777 15 % 405 10 % 
White 6163 52 % 2482 60 % 
Missing 43 <1% 0 0 % 

Household Income     
≤ $50,000 3215 27 % 1735 42 % 
$50,000 to $100,000 3066 26 % 1921 47 % 
≥ $100,000 4544 38 % 2683 65 % 
Didn’t know or refused 1013 9 % 519 13 % 
Missing 0 0 % 0 0 % 

Urbanicity     
Urbanized area 9821 83 % 3578 87 % 
Urban cluster 372 3 % 157 4 % 
Rural area 966 8 % 368 9 % 
Missing 722 6 % 0 0 % 

MRI Scanner Manufacturer     
Siemens 7303 61 % 2720 66 % 
GE Medical Systems 2941 25 % 942 23 % 
Philips Medical Systems 1521 13 % 441 11 % 
Missing 116 1 % 0 0 %   

Mean ± Standard 
deviation 

Mean ± Standard 
deviation 

Screen Time (weekday; hours) 3.46 ± 3.10 3.11 ± 2.77 
Screen Time (weekend; hours) 4.62 ± 3.63 4.29 ± 3.32 
Physical Activity (days) 3.49 ± 2.32 3.64 ± 2.29 
Neighborhood Safety 3.89 ± 0.98 3.97 ± 0.91 
Population Density (people/km2) 2136.40 ± 2219.72 2023.30 ± 2210.08 
Distance to Roadways (meters) 1187.58 ± 1282.81 1218.05 ± 1399.17 
Nighttime Noise (dB) 51.10 ± 3,91 50.69 ± 3.91 
PM2.5 (µg/m3) 7.52 ± 2.56 7.36 ± 2.54 
Head Motion (mm) 1.31 ± 0.43 1.19 ± 0.19 
Anisotropc diffusion change (%/yr) − 1.28 ± 6.21 − 1.00 ± 4.95 
Isotropic diffusion change (%/yr) 1.65 ± 3.56 1.57 ± 3.07 
Note. *Some missing demographic values in the complete-case sample because 

“complete” was defined as no missing values for variables of interest (i.e., PM2.5 

sources, dMRI data) or covariates (i.e., minimally sufficient set, as described in 
Demographic Data, Covariates, & Precision Variables). The “Other” Race & Ethnicity 
category includes youth whose caregiver identified them as American Indian/ 
Native American, Alaska Native, Native Hawaiian, Guamanian, Samoan, Other 
Pacific Islander, Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, 
Other Asian, Other Race, or as belonging to more than one race.  
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intracellular diffusion. To complement and potentially contextualize the 
PMF-derived PM2.5 sources, we also ran PLSC models for each isotropic 
and anisotropic intracellular diffusion changes with all 15 of the indi-
vidual chemical components of PM2.5. Thus, four PLSC models were run: 
six PM2.5 sources and anisotropic intracellular diffusion, six PM2.5 
sources and isotropic intracellular diffusion, 15 PM2.5 components and 
anisotropic intracellular diffusion, and 15 PM2.5 components and 
isotropic intracellular diffusion. 

Briefly, PLSC is a multivariate, cross-decomposition technique that 
projects multidimensional variable blocks (here: changes in intracellular 
diffusion, sources of PM) into a lower dimensional subspace such that 
the covariance between variable blocks is maximized. This process 
identifies “latent dimensions” of correspondence between blocks by 
calculating their best fit correlation, constrained to the maximal 
covariance structure (Krishnan et al., 2011; McIntosh and Lobaugh, 
2004). Because PLSC requires complete case data, we used listwise 
deletion to remove incomplete cases. Here, we used TExPosition to 
perform PLSC (Beaton et al., 2014), Boot4PLSC() from data4PCCAR 
for bootstrapping to identify significant latent dimensions of associa-
tions (Abdi and Beaton, 2023). Versions of all packages used in these 
analyses are noted in Supplementary Methods. 

Prior to running PLSC, PM2.5 sources or PM2.5 components and 
cortical microarchitecture measures were mean-centered and normal-
ized (to standard deviation of 1). For each block of variables (cortical 
microarchitecture changes and sources, or components, of PM), the 
residualized, normalized values were arranged into participant-by- 
variable matrices. For PM2.5 sources, this comprised a row per partici-
pant and a column per source, whereas for PM2.5 components this 
included a row per participant and a column per component. For cortical 
microarchitecture changes, this comprised a row per participant and a 
column per cortical region. The correlation between the two matrices 
was then decomposed using singular value decomposition (SVD) into 
three matrices: a square singular value matrix and a matrix each for 
PM2.5 source (or PM2.5 components)and cortical microarchitecture 
loadings on each latent dimension. Thus, each latent dimension consists 
of one variable per block of data that was derived from a linear com-
bination of the original variable blocks (i.e., cortical microarchitecture 
changes, sources or components of PM) and represents the loading of 
that block on the latent dimension. These variable loadings, or “sa-
liences”, describe how the original variables in each block load 
contribute to each latent dimension, while the singular values explain 
the correlation of latent variable pairs, per dimension. An effect size was 
then calculated per latent dimension, denoting the proportion of 
covariance between blocks that it explains, from the ratio of that latent 
dimension’s squared singular values to the sum of all latent dimensions’ 
singular values. 

We, then, used permutation testing and bootstrapping to assess sta-
tistical significance of the overall model and of each latent dimension, 
respectively (Abdi and Williams, 2013; Krishnan et al., 2011; McIntosh 
and Lobaugh, 2004). In order to test for statistical significance of the 
overall model, we used the procedure described by McIntosh and 
Lobaugh (2004), in which variables were reordered across 1000 per-
mutations and the probability of the observed solution was computed as 
the number of times the permuted singular values exceeded the 
observed singular values. The SVD used in PLSC gives a fixed number of 
solutions, the upper bound of which is restricted by the number of 
variables in the smaller block (in this case, 6 solutions due to 6 sources of 
air pollution or 15 solutions due to 15 PM2.5 components). In order to 
test for statistical significance of variable loadings on each significant 
observed latent dimension, we used the procedure described by McIn-
tosh and Lobaugh (2004) and calculated variable loadings from 10,000 
bootstrapped samples. These loadings were used to calculate a confi-
dence bootstrap ratio, which approximates a z-score, per variable per 
significant latent dimension. We determined variables with bootstrap 
ratios greater than 2.5 (i.e., p < 0.01) to significantly load on that 
dimension. This entire process was performed separately for isotropic 

and anisotropic intracellular diffusion. 
Finally, loadings for changes in cortical microarchitecture and 

sources, or components, of air pollution were plotted against each other 
to visualize the nature of the relationship. Similarly, the neuroanatomy 
of each latent dimension of association between cortical micro-
architecture development and PM2.5 sources or components was visu-
alized via cortical surface plots (i.e., Fig. 1C; Supplementary Figures 9C, 
10C, 12C, 13C, 14C). 

3. Results 

The final sample characteristics for the current study are described in 
Table 1 and average PM2.5 component exposures, across participants, 
are described in Supplementary Table 2 and Supplementary Figure 3. 
Per-site average participant loadings for each source and average PM2.5 
component masses are available in Supplementary Table 3 and 4, 
respectively. Average changes in microarchitecture across the brain in 
the ABCD Study sample are described elsewhere by Bottenhorn et al. 
(Bottenhorn et al., 2023). 

By assessing latent dimensions of association between PM2.5 sources 
and changes in cortical microarchitecture using PLSC, we revealed a 
widespread pattern of changes in anisotropic intracellular diffusion 
related to exposure to PM2.5 (pomnibus < 0.01; Supplementary Table 5), 
but no significant association between changes in isotropic intracellular 
diffusion and PM2.5 sources (pomnibus = 0.527; Supplementary Table 5). 
Analyses of all 15 components of PM2.5 and changes in cortical micro-
architecture revealed multiple significant latent dimensions of associa-
tions between exposure and changes in both anisotropic and isotropic 
intracellular diffusion (both pomniobus < 0.01; Supplementary Table 5). 

3.1. Latent dimensions of association between PM2.5 sources, 
components, and annual changes in anisotropic intracellular diffusion 

These analyses revealed one significant latent dimension of associ-
ation between annual changes in anisotropic intracellular diffusion (i.e., 
neurite density) and PM2.5 sources (p < 0.01) that accounted for 68 % of 
shared variance between PM2.5 sources and neurite density changes 
(Supplementary Figure 7, Supplementary Table 5). Exposure to PM2.5 
attributed to biomass burning (p < 0.01; Fig. 1A) was associated with 
neuroanatomically diffuse changes in anisotropic intracellular diffusion 
(i.e., neurite density) over time, spanning occipital, temporal, parietal, 
and frontal lobe regions (Fig. 1B, C). These exposure-related differences 
in annual cortical microarchitecture changes were most evident in 
frontal gyri, pre- and postcentral gyri, superior temporal gyri, inferior 
parietal regions, caudal anterior cingulate gyri, right insula, and left 
caudal anterior cingulate gyrus (see Supplementary Table 6 for regional 
saliences). Recalling that cortical anisotropic intracellular diffusion is 
predominantly decreasing across this developmental period, these pos-
itive exposure-brain associations reflect smaller annual decreases in 
change in anisotropic intracellular diffusion with age. The remaining 
latent dimensions were not significant at p < 0.01 (Supplementary 
Table 5). 

There were two significant latent dimensions of association between 
PM2.5 components and annualized change in anisotropic intracellular 
diffusion (both p < 0.01) (Supplementary Figure 8). The first dimension 
represented latent associations between brain development and expo-
sure to elemental carbon (EC), potassium (K), and organic carbon (OC), 
and ammonium (NH4

+) (Supplementary Figure 9A). These patterns of 
exposure-related differences reflect smaller annualized change of 
anisotropic intracellular diffusion and spanned all lobes of the cerebral 
cortex (Supplementary Figure 9B,C). The second dimension represented 
latent associations between right hemisphere parahippocampal and 
fusiform gyri development and exposure to bromine (Br) and copper 
(Cu), with higher exposure related to greater decreases in annualized 
changes of anisotropic intracellular diffusion over time (Supplementary 
Figure 10). The remaining latent dimensions each accounted for < 10 % 
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of shared variance (see Supplementary Table 5). 

3.2. Latent dimensions of association between PM2.5 sources, 
components, and annual changes in isotropic intracellular diffusion 

While no PM2.5 sources showed significant latent dimensions of as-
sociation with changes to isotropic intracellular diffusion, the PLSC 
model with PM2.5 components identified three latent dimensions of 
exposure-related differences in isotropic intracellular diffusion change 

(all p < 0.01; Supplementary Table 5, Supplementary Figure 11). Similar 
to the PM2.5 components and anisotropic intracellular diffusion model, 
the first dimension represented latent associations between exposure to 
K, OC, and NH4

+ and brain development (Supplementary Figure 12A). 
Exposure-related differences in annualized change in isotropic intra-
cellular diffusion along this first dimension was driven by the left 
cuneus, precentral, middle frontal, and pericalcarine gyri, bilateral 
anterior cingulate gyri, and right superior frontal gyrus and insula 
(Supplementary Figure 12B,C). The second dimension represented 

Fig. 1. Changes in cortical anisotropic intracellular diffusion are linked to exposure to pollution from biomass burning. A. Bootstrap ratios, equivalent to z- 
scores, indicate significant loadings (|z| > 2.5, dashed line) of air pollution from biomass burning on the first latent dimension of brain-pollution associations. B. 
Bootstrap ratios indicate significant loadings (|z| > 2.5; outside the shaded box) of annualized change in anisotropic intracellular diffusion (i.e., neurite density), 
across brain regions, on the first latent dimension of brain-pollution associations. Regional loading markers are color-coded based on broad functional systems. C. The 
same regionalloadings (i.e., bootstrap ratios, equivalent to z-scores) of significant changes in anisotropic intracellular diffusion, by region, on the first latent 
dimension of brain-pollution association, as shown in (B), plotted on a cortical surface template. See Supplementary Table 6 for numerical estimates of brain and 
pollution saliences. 
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latent associations between isotropic intracellular diffusion brain 
development and exposure to sulfates (SO4

2-) and vanadium (V) (Sup-
plementary Figure 13A). Exposure-related differences in annual changes 
in isotropic intracellular diffusion along this second dimension were 
driven by the right precentral gyrus, bilateral cuneus, and bilateral 
calcarine gyri (Supplementary Figure 13B,C). Greater exposure to SO4

2- 

and V was related to greater increases in isotropic intracellular diffusion 
in cuneus and pericalcarine cortex, but to smaller increases in the pre-
frontal gyrus. Finally, the third dimension linked vanadium (V) exposure 
(Supplementary Figure 14A) to differences in in annual isotropic intra-
cellular diffusion changes in superior parietal, lateral occipital, and 
paracentral gyri, right inferior temporal gyrus, bilateral inferior parietal 
and right posterior cingulate, insula, and precuneus (Supplementary 
Figure 14B,C). Again, we see different directions of effect, as greater 
exposure was associated with greater annual increases in right insula 
isotropic intracellular diffusion, but less annual increases in parietal, 
occipital, and inferior temporal isotropic intracellular diffusion changes 
with age. The remaining, non-significant latent dimensions accounted 
for < 10 % each (Supplementary Table 5). 

4. Discussion 

Particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) 
emitted from biomass burning is related to a widespread pattern of 
cortical microarchitecture development, such that greater exposure is 
related to smaller changes during early adolescence. Cortical anisotropic 
intracellular diffusion, thought to reflect neurite (i.e., axon and 
dendrite) density, is largely decreasing during this developmental 
period (Bottenhorn et al., 2023), which may reflect ongoing synaptic 
pruning and subsequent refinement of neural circuitry that occurs dur-
ing this developmental period. Greater exposure to PM2.5 from biomass 
burning is linked to smaller decreases in neurite density, which may 
indicate disruption to these ongoing developmental changes. No other 
source of PM2.5 was significantly related to cortical microarchitecture 
development. However, individual chemical components showed latent 
dimensions of association with microarchitecture development, sug-
gesting that a single source may have differential effects on brain 
development due to its specific chemical composition mixture, while 
individual components might have source-independent effects. Devel-
opmental changes in isotropic intracellular diffusion, likely reflecting 
changing densities of neuronal cell bodies or support cells, was unre-
lated to source-specific PM exposure. Conversely, individual compo-
nents of biomass burning (i.e., K, OC) and secondary ammonium sulfates 
(i.e., NH4

+, SO4
2-, V) were associated both positively and negatively with 

changes in occipital and frontal regions. This work makes important 
contributions to the literature on the health effects of PM2.5 air pollution 
exposure in several key ways. First, it assesses exposure-related differ-
ences in how the brain changes over development, to complement extant 
cross-sectional neuroimaging studies of brain-exposure associations 
reviewed in (de Prado Bert et al., 2018; Herting et al., 2019). Second, it 
assesses cortical microarchitecture, using a multi-compartment bio-
physical model that is sensitive to differences in cortical cytoarchi-
tecture (White et al., 2013), to complement the existing literature on 
white matter and subcortical microarchitecture (Burnor et al., 2021; 
Lubczyńska et al., 2020; Peterson et al., 2015; Sukumaran et al., 2023). 
Third, it leverages a large, geographically diverse sample and PM2.5 
source apportionment for more interpretable, actionable insights into 
the role of specific sources of PM2.5 exposure in brain development. 

4.1. Exposures within federal air quality standards linked to differences in 
cortical microarchitecture changes 

The majority of in vivo studies of differences in the human brain 
related to air pollution exposure have been limited by cross-sectional 
neuroimaging data and are, thus, unable to consider exposure-related 
brain changes within an individual. Here, we use estimates of 

annualized change in cortical microarchitecture between ages 9–10 and 
11–13 years to capture broad intra-individual change and inter- 
individual differences therein (Bottenhorn et al., 2023; Mills et al., 
2021) during a sensitive period for neurodevelopment (Aoki et al., 
2017), including microglial-mediated development (Schalbetter et al., 
2022). During this age range, anisotropic intracellular diffusion is 
decreasing across the cortex (Bottenhorn et al., 2023), but our current 
results suggest that individuals with greater exposure to PM2.5 attrib-
utable to biomass burning are decreasing less. Anisotropic, or direc-
tional, intracellular diffusion reflects water movement within cylindrical 
intracellular spaces (e.g., axons, dendrites, glial processes). At the res-
olution of the diffusion-weighted images used here, anisotropic intra-
cellular diffusion would likely represent aggregated parallel cylindrical 
intracellular spaces within a voxel (here, 1.7 mm isotropic) such as those 
found in cortical columns and macrocolumns (~350 to 600 µm) (Opris 
and Casanova, 2014). Thus, the data presented here may provide a 
coarse estimate of the directional organization of cortical macro-
columns, averaged across a gyrus. In the human brain, synaptic pruning 
follows a protracted course of development, continuing throughout 
early adolescence, though decreases in neuronal cell bodies occur earlier 
in development. The process of synaptic refinement likely includes 
retraction and fragmentation of neuronal and glial processes (Hutten-
locher and Dabholkar, 1997). Anisotropic intracellular diffusion, 
thought to represent neurite density, may be sensitive to this process. If 
that is the case, then pruning along an axis (e.g., within a cortical col-
umn, in which neurons are vertically connected) could manifest as a 
decrease in anisotropic intracellular diffusion. This notion is supported 
by links between anisotropic intracellular diffusion and genes that are 
responsible for neurite morphogenesis (Brot et al., 2010; Selemon, 
2013). 

Given the roles of microglia in both healthy developmental synaptic 
refinement (Schalbetter et al., 2022) and neuroinflammation stemming 
from particulate exposure (Gillespie et al., 2013; Kang et al., 2021), we 
should also consider potential roles of microglia in these findings., 
Interestingly, anisotropic and isotropic intracellular diffusion are related 
to both genes and epigenetic- related cellular processes underlying 
synaptic pruning and neuroinflammation (Fan et al., 2022). By incor-
porating in vivo neuroimaging with virtual histology and gene expres-
sion data from the Allen Brain Atlas, Vidal-Pineiro et al. found that 
microglia expression was inversely related to cortical thinning in youth, 
but positively related to cortical thinning in aging adults (Vidal-Pineiro 
et al., 2020). As cortical thinning is thought to reflect, in part, synaptic 
pruning, Vidal-Pineiro and colleagues inferred that these contrasting 
associations reflect a changing role of microglia across the lifespan: from 
neuronal support in youth to pro-inflammatory immune responses in 
aging. As our findings might suggest a PM-related difference in the 
annual decrease in adolescent synaptic pruning seen with age (i.e.,evi-
denced by a positive association between biomass burning PM and 
neurite density), is it possible a PM-induced inflammatory response is 
co-opting the ongoing microglia-mediated synaptic pruning during this 
period of development? Additional animal research is needed to deter-
mine whether the findings presented in this work reflect impaired 
adolescent cortical pruning as a function of PM exposure. 

Experiments in mice suggest that the cortex may have a lower 
threshold for lasting air pollution-related disruptions than subcortical 
regions (Bernardi et al., 2021), evidenced by greater increases in 
microglia and a larger window of antioxidant system susceptibility in 
cortex, compared to the striatum. These findings highlight the impor-
tance of the present work, as the neurotoxicity of air pollution is rela-
tively less investigated in the potentially more susceptible cortex. We 
found largely positive associations between one-year of exposure and 
changes in anisotropic intracellular diffusion, suggesting that greater 
exposure is linked to smaller decreases in neurite density. This is further 
supported by studies demonstrating air pollution-related differences in 
cortical macrostructure (i.e., cortical thickness, area, and volume) in 
similarly-aged children that are consistent with disrupted synaptic 
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pruning (Cserbik et al., 2020; Lubczyńska et al., 2021). More neuro-
anatomically specific, anisotropic intracellular diffusion is linked to the 
enrichment of epigenetic markers in the cingulate gyrus (Fan et al., 
2022), which is among the regions most impacted by PM2.5 exposure 
seen here and also in rodent models (Nephew et al., 2020). Prior work 
with the ABCD Study cohort data by our team has revealed that the 
anterior cingulate gyrus also exhibits largest decreases in anisotropic 
intracellular diffusion during early adolescence (Bottenhorn et al., 
2023). Thus, the relatively strong association between exposure to PM2.5 
from biomass burning and annual changes to anisotropic intracellular 
diffusion in the rostral anterior cingulate gyrus may indicate marked 
regional vulnerability given more dynamic development that occurs in 
this region during this period of early adolescence. 

4.2. Source modeling highlights air pollution effects stemming from 
biomass burning 

From nationwide modeled annual estimates of 15 PM2.5 components, 
a positive matrix factorization (PMF) analysis conducted by our research 
team has identified six overarching sources of PM2.5 exposure using 
exposure profiles from the ABCD Study cohort (Sukumaran et al., 
Forthcoming). Of these, a source loading highly in bromine (Br), po-
tassium (K), and organic carbon (OC) was attributed to biomass burning 
(Sukumaran et al., under review). Biomass burning comprises smoke 
from wildfires, wood burning for residential heating and industrial 
power production, prescribed burns, land clearing, restaurant emissions 
(especially from meat cooking), and other sources of organic matter 
combustion (Adam et al., 2021; Johnston et al., 2019; Li et al., 2018; 
Robinson et al., 2018; Stockwell et al., 2015). Using these common 
source factors of PM exposure, our findings add to substantial evidence 
of specific health effects due to exposure to PM2.5 attributed to biomass 
burning. For example, biomass burning and secondary organic carbon 
were consistently among the most harmful sources of exposure related to 
same-day hospital admissions for cardiovascular and respiratory con-
cerns (Krall et al., 2017; Ostro et al., 2007), even when biomass burning 
only accounted for 7–8 % of total PM2.5 (Sarnat et al., 2008) cardio-
vascular, natural, and lung cancer mortality, along with systemic 
inflammation in Europe (Chen et al., 2022; Huttunen et al., 2012; 
Siponen et al., 2015) Specifically, the K and OC produced by biomass 
burning, are consistently associated with overall mortality (Achilleos 
et al., 2017; Reid et al., 2016). While these previously noted associations 
are on a different temporal scale and in a broader age range than the 
data analyzed here, they contextualize our current findings linking in-
dividual PM2.5 components to brain changes. 

Depending on particle size,inhaled PM affects brain health via sys-
temic inflammation following deposition in the lungs, and possibly 
directly, via the olfactory nerve(Jankowska-Kieltyka et al., 2021; Milton 
and White, 2020; You et al., 2022). Further, systemic inflammation in-
creases permeability of the blood–brain barrier, potentially allowing 
circulating ultrafine particles (UFPs; <100 nm) in the bloodstream to 
enter the brain. In vitro human brain models have shown that PM2.5 can 
cross the blood–brain barrier, accumulate in brain tissue, and cause 
neuroinflammation and neurodegeneration (Kang et al., 2021). UFPs 
have also been seen in post mortem brain tissue (Maher et al., 2016), 
including that of otherwise healthy, young people (Calderón- 
Garcidueñas et al., 2016, 2010, 2008). Non-human animal studies 
demonstrate that PM exposure causes oxidative toxicity, lipid peroxi-
dation, cell death, reactive gliosis, and the release of pro-inflammatory 
cytokines from microglia in the brain (Campbell et al., 2005; 
Fagundes et al., 2015; Jankowska-Kieltyka et al., 2021; Milton and 
White, 2020; Scieszka et al., 2022; Woodward et al., 2017; Zhang et al., 
2018). Among contributors to PM2.5 from biomass burning, wildfire 
smoke is among the most researched. Wildfire smoke can cause infil-
tration of peripheral immune cells into the brain, decreases in protective 
neurometabolites, and increases in pro-inflammatory microglia pheno-
types in mice (Scieszka et al., 2022). However, these responses do differ 

between brain regions (Fagundes et al., 2015; Gerlofs-Nijland et al., 
2010; Woodward et al., 2017). Furthermore, prior research has shown 
that wildfire smoke has a particularly high concentration of UFPs and 
that PM from wildfire smoke causes greater oxidative stress than PM 
from other sources (Milton and White, 2020). Altogether, cellular and 
molecular studies of PM2.5 impacts on the brain, especially those of a 
major biomass burning source in wildfire smoke, underscore the pat-
terns of exposure-related microarchitecture changes uncovered here. 

4.3. Differences in cortical microarchitecture development coalesce with 
exposure-related differences in subcortex and white matter at ages 9–10 
years 

This work fills a gap in the environmental neuroscience literature by 
assessing changes in cortical microarchitecture related to PM2.5 air 
pollution exposure in humans. Our recent work, also based on the ABCD 
Study cohort, has identified differences in cortical and subcortical gray 
matter macrostructure (Cserbik et al., 2020), white matter micro-
architecture (Burnor et al., 2021) and subcortical gray matter micro-
architecture (Sukumaran et al., 2023) related to total outdoor PM2.5 
exposure in children ages 9–10 years. Here, we extend this literature 
with a novel foray assessing differences in cortical microarchitecture 
changes related to PM2.5 sources and chemical component exposure. 
Notably, we found exposure-related differences in developmental 
change in the cortical regions connected by the aforementioned white 
matter tracts affected by PM2.5 exposure at ages 9–10 years (e.g., 
cingulate, frontal, angular, and parietal). Taken together, differences in 
brain development due to PM2.5 exposure may have further implications 
for adolescent cognitive and mental health. Adolescence is a time of 
heightened vulnerability to psychopathology, with peak incidence 
around 14 years of age (Solmi et al., 2022). Abnormal synaptic pruning 
and exposure to PM2.5 have both been linked to increases in mental 
health problems (Bakolis et al., 2021; Braithwaite et al., 2019; King 
et al., 2022), along with neurological differences consistent with neu-
rodevelopmental disorders (Xie et al., 2023). Although prior work by 
our lab and others have found little to no association between total 
outdoor PM2.5 exposure and mental health problems in late childhood 
and early adolescence (Campbell et al., 2023), these analyses have not 
been repeated with PM2.5 source or component exposure estimates. A 
possible explanation, that unifies the neuroimaging and behavioral 
findings, is that these differences and changes in brain structure and 
function associated with PM2.5 exposure may act as early signs, or bio-
markers, of developing psychopathology later on in adolescence and 
young adulthood. Thus, the differences incortical microarchitecture 
development related to biomass burning PM2.5 exposure shown here 
may reflect early, pre-clinical impacts with more serious future 
implications. 

4.4. Recommendations for parents and policymakers 

While PM2.5 levels have largely decreased in recent decades (Our 
Nation’s Air, 2022), the contribution from biomass burning has 
increased in some regions across the US (Milando et al., 2016; Singh 
et al., 2022)Wildfires are increasingly responsible for PM2.5 levels and 
contribute to biomass burning (Burke et al., 2023; Enayati Ahangar 
et al., 2021; Li et al., 2021; O’Dell et al., 2019). Further, human-caused 
climate change and wildfires have a bidirectional relationship, such that 
climate change is leading to more and larger fires, which release gasses 
and PM that amplify climate change (Boegelsack et al., 2018). While 
wildfires are not the only source of biomass burning, wildfire smoke 
crosses state, province, and national borders, affecting individuals 
beyond the jurisdictions in which they burn. Thus, exposure to PM2.5 
from biomass burning is becoming more prevalent even as air quality 
improves otherwise. Federal and international monitoring and policy- 
based mitigation efforts are required to lessen the potential impacts of 
biomass burning on child and adolescent brain development. The 
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demonstrated associations between particles produced by biomass 
burning and their potential serious threats to human health and child 
brain development underscore the importance of mitigating exposure. 
The findings presented here further support the findings of neurological 
differences in children with exposures below the United States EPA’s 
national standards, before observable detriment to cognition and mental 
health. Avoiding exposure, especially in children, will require air quality 
monitoring, staying indoors when air quality is poor, and frequently 
changing air filters on air conditioning units or using air filtration to 
assure good indoor air quality. 

4.5. Limitations 

Geographical location plays a role in the sources and composition of 
PM2.5, but is also linked to many other environmental exposures, both 
directly and indirectly. Local geography, pollution exposure, built and 
social environments, sociodemographic factors, and air quality are all 
intricately linked and can be modeled comprehensively by the “expo-
some” (Deguen et al., 2022; Pearson et al., 2022; Vineis, 2019). In the 
current study, we adjusted for many of these sociodemographic and 
other exposures to try and capture unique associations between one year 
of PM exposure and brain changes. However, future work should 
consider a more comprehensive, “omics” approach to partial out po-
tential roles of the built and social environment in brain development, 
regional variability in exposure profiles, and how they complicate the 
exposure-neurodevelopment associations described here. Furthermore, 
PM2.5 estimates assessed here represent annual average concentrations 
from the year 2016 that have been linked to each subject’s primary 
residence at ages 9–10 years old (i.e., the first year of baseline data 
collection for the ABCD Study). At present, PM2.5 levels for subsequent 
study years are not available for the ABCD Study, precluding an 
assessment of concurrent exposure and brain changes. However, prior 
work with these PM2.5 data indicates that annual averages are relatively 
stable in the years leading up to 2016 (Di et al., 2019). More recent data 
from the U.S. Environmental Protection Agency (EPA) suggests that this 
stability persisted during the change period assessed here (i.e., from 
2016 to March 2020) in most regions across the United States (Our 
Nation’s Air, 2022). Additionally, exposure estimates are linked to 
participants’ primary addresses and do not include exposure data from 
other locations at which youth spend time (e.g., school). Thus, while this 
work highlights potential links between one year of residential exposure 
and brain changes in the following two years, future work is needed to 
assess the temporality of these links and incorporate exposures from 
other frequented locations. Additional years of exposure and neuro-
imaging data are necessary to clarify how ongoing and cumulative ex-
posures are related to individual differences in neurodevelopmental 
trajectories. 

Here, we used positive matrix factorization (PMF) to perform source 
apportionment with geographically diverse multi-site PM2.5 component 
estimates (i.e., including data from all 21 ABCD Study data collection, 
spanning most of the U.S. in one analysis). Doing so enabled us to derive 
common sources contributing to air pollution levels at all 21 sites. 
However, this approach also assumes common source profiles across 
sites, though component profiles may exhibit slight geographical vari-
ability within a source. This approach, thus, identifies common sources 
while potentially overlooking lesser PM2.5 sources (e.g., responsible for 
only a small proportion of PM2.5 or only present at a few sites). However, 
the benefits of deriving common PM2.5 outweigh these limitations, as 
they allow us to study and compare exposure impacts across a large 
participant sample. The ABCD Study is currently the largest, long-term 
study of adolescent brain and cognitive development. Thus, it presents 
a rich opportunity for investigating the health and developmental im-
plications of source-specific air pollution exposure. Prior to running 
these PLSC models, we adjusted for data collection site as a fixed effect. 
As some sources identified here exhibit spatial gradients across regions 
of the U.S., this method of adjusting for site differences may either 

capture or dilute some sources’ specific effects. 
Using region-averaged neuroimaging data simplifies interpretability, 

reduces dimensionality in a neuroanatomically-informed manner, and 
may increase signal-to-noise ratio, like the effects of spatial smoothing in 
MRI data. However, Palmer et al. demonstrate considerable heteroge-
neity in cortical, subcortical, and white matter microarchitecture within 
regions using a voxelwise approach (i.e., not averaged across gyri, re-
gions, or tracts) in the same data. On the other hand, the use of PLSC to 
identify latent dimensions of association between exposure and brain 
changes limits the interpretability of these findings as it does not provide 
a readily interpretable effect size with which to contextualize exposure- 
related differences in change. Future research is needed to assess 
exposure-neurodevelopment associations seen within regions of cortical 
microarchitecture and effect sizes of these associations. 

Finally, although the ABCD Study sampling procedures aimed to 
assemble a sample that is sociodemographically representative of the 
population of the United States, the final sample over represents youth 
from wealthier, whiter, and more educated households. The quality 
control procedures employed here and exclusion of individuals with 
incomplete data further limit generalizability of these findings. Future 
studies are warranted that include larger representation of lower income 
and minority backgrounds, which have greater burden to exposure in 
the U.S. (Collins et al., 2022; Colmer et al., 2020). 

5. Conclusions 

Here, we identified a pattern of differences in early adolescent 
cortical development linked to exposure to PM2.5 air pollution largely 
attributable to biomass burning. Between ages 9 and 13 years, synaptic 
pruning is ongoing across the cortex, facilitated in part by the actions of 
microglia. This process may be reflected by decreasing anisotropic 
intracellular diffusion, reflecting neurite density, seen across the cortex 
in this age range. The current study found that individuals with greater 
PM exposure attributed to biomass burning show smaller decreases in 
anisotropic intracellular diffusion over time. Policymakers should 
consider putting greater emphasis on anthropogenic activities that 
contribute to biomass burning, in order to minimize any long-term harm 
caused by disrupted cortical development due to PM2.5 exposure. 
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Torres-Jardón, R., Carlos, E., Solorio-López, E., Medina-Cortina, H., Kavanaugh, M., 
D’Angiulli, A., 2012. White matter hyperintensities, systemic inflammation, brain 
growth, and cognitive functions in children exposed to air pollution. J. Alzheimers 
Dis. 31, 183–191. https://doi.org/10.3233/JAD-2012-120610. 
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