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Abstract  23 

Recent studies have linked air pollution to increased risk for behavioral problems during development, 24 

albeit with inconsistent findings. Additional longitudinal studies are needed that consider how emotional 25 

behaviors may be affected when exposure coincides with the transition to adolescence – a vulnerable 26 

time for developing mental health difficulties. This study investigates if annual average PM2.5 and NO2 27 

exposure at ages 9-10 years moderates age-related changes in internalizing and externalizing behaviors 28 

over a 2-year follow-up period in a large, nationwide U.S. sample of participants from the Adolescent 29 

Brain Cognitive Development (ABCD) Study®. Air pollution exposure was estimated based on the 30 

residential address of each participant using an ensemble-based modeling approach. Caregivers 31 

answered questions from the Child Behavior Checklist (CBCL) at the baseline, 1-year follow-up, and 2-32 

year follow-up visits, for a total of 3 waves of data; from the CBCL we obtained scores on internalizing 33 

and externalizing problems plus 5 syndrome scales (anxious/depressed, withdrawn/depressed, rule-34 

breaking behavior, aggressive behavior, and attention problems). Zero-inflated negative binomial models 35 

were used to examine both the main effect of age as well as the interaction of age with each pollutant on 36 

behavior while adjusting for various socioeconomic and demographic characteristics. Against our 37 

hypothesis, there was no evidence that greater air pollution exposure was related to more behavioral 38 

problems with age over time.  39 

Keywords: air pollution; internalizing; externalizing; adolescence; neurodevelopment  40 
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1. Introduction 41 

Mental health conditions remain a global health challenge for all age groups (World Health Organization, 42 

2018), but the risk for onset of psychopathology is highest in childhood and adolescence. Both 43 

internalizing and externalizing symptoms typically emerge during adolescence (Achenbach et al., 1991). 44 

Moreover, up to approximately 20% of children and adolescents are affected by mental health problems 45 

worldwide (Polanczyk et al., 2015) with half of all lifetime mental health conditions diagnosed by age 14 46 

years (Kessler et al., 2005). To reduce societal costs and improve quality of life for affected individuals, 47 

research on modifiable risk and resilience factors holds the promise to potentially uncover new avenues 48 

for early prevention and intervention.  49 

Recent evidence indicates that outdoor air pollution may contribute to increased risk for mental health 50 

conditions (Braithwaite et al., 2019; Zundel et al., 2022). A growing body of literature has associated 51 

ambient exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) with mental health 52 

outcomes in children, adolescents, and adults, including symptoms of anxiety, depression, and 53 

aggression in children, as well as increased risk for attention deficit and hyperactivity disorder (ADHD) 54 

and delinquency problems (Forns et al., 2016; Margolis et al., 2016; Newman et al., 2013; F. Perera et 55 

al., 2016; F. P. Perera et al., 2014; Thygesen et al., 2020; Yorifuji et al., 2016, 2017). However, recent 56 

comprehensive reviews of how air pollution relates to anxiety and depression (Zundel et al., 2022) and 57 

attention problems (Myhre et al., 2018) highlight a number of inconsistencies and important knowledge 58 

gaps in the broader air pollution and mental health literature. For example, while most studies found 59 

positive associations between air pollution exposure and anxiety and depression, 25% of studies did not 60 

find associations or reported mixed effects, and fewer than 10% examined air pollution exposure during 61 

the susceptible window of childhood and adolescence. Even within the developmental literature, there 62 

are mixed results: some studies suggest prenatal through adolescent exposure is linked to more 63 

internalizing problems (Brokamp et al., 2019; Brunst et al., 2019; B. Fan et al., 2019; Margolis et al., 64 

2016; Rasnick et al., 2021; Yolton et al., 2019), where others have failed to find an association (Jorcano 65 

et al., 2019; Zhao et al., 2019). Thus, additional research is needed to clarify the relationship between air 66 

pollution exposure and mental health behaviors during the developmental periods of childhood and 67 

adolescence. 68 

Importantly, most previous studies have been limited to cross-sectional assessment of mental health 69 

outcomes and/or are limited in terms of both the geographic and sociodemographic diversity of their study 70 

sample. Discrepancies in results may also be due in part to both differences in the window of exposure 71 

as well as the timing of the behavioral evaluation, especially given the known developmental patterns in 72 

symptom onset. For example, a recent study of 8 European cohorts found that neither prenatal nor early 73 

life exposure was related to cross-sectional outcomes of depression, anxiety, or aggression behavior 74 

using the Child Behavior Checklist (CBCL) or Strengths and Difficulties Questionnaire (SDQ) when 75 

assessed in mid-to-late childhood (Jorcano et al., 2019); however, this study was limited by examining 76 

only one time point of internalizing and externalizing behaviors. Given that the frequency and intensity of 77 

emotional problems vary across childhood and adolescence (Barch et al., 2021), it is important to 78 

consider how air pollution exposure may contribute to mental health problems over time. For example, 79 

Roberts and colleagues (Roberts et al., 2019) found that while exposure to higher levels of PM2.5 and 80 

NO2 at age 12 years was not associated with concurrent mental health conditions, it did successfully 81 

predict a 1.5 fold increased risk for developing major depressive disorder at 18 years of age. Similarly, 82 
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Reuben and colleagues (2021) found that exposure to nitrous oxides (NOX) in childhood predicted later 83 

onset of internalizing, externalizing, and thought disorder symptoms at age 18 years. The latter two 84 

studies suggest that exposure during childhood and adolescence may lead to greater mental health 85 

problems overtime, emphasizing the importance in assessing emotional and behavioral problems 86 

longitudinally. Thus, additional large-scale longitudinal studies are warranted to further investigate if 87 

exposure in late childhood may moderate changes in emotional behavior problems as individuals 88 

transition to early adolescence.  89 

Beyond the considerations of timing of the exposure and longitudinal assessment of the outcome, 90 

questions also remain as to the potential health effects of air pollution below the current air quality 91 

standards. That is, despite significant declines in air pollution, recent epidemiological studies continue to 92 

find links between adverse health effects and levels of exposure well below the Environmental Protection 93 

Agency (EPA)’s specified annual averages for PM2.5 (<= 12 μg/m3 ) and NO2 (<=53 parts per billion; ppb) 94 

(Dominici et al., 2019). This emerging body of research showing that negative health effects can be 95 

observed at low concentrations of exposure suggests that no observable threshold may be considered 96 

“safe” (for review, see Papadogeorgou et al., 2019). As such, the World Health Organization (WHO) 97 

updated their regulatory guidelines on ambient air quality in September 2021, recommending that annual 98 

averages of PM2.5 and NO2 not exceed 5 μg/m3 and 10 μg/m3 (equivalent to 5.33 ppb) respectively (World 99 

Health Organization, 2021). Previous literature linking behavioral problems with ambient air pollution 100 

observed relationships with exposure levels that largely exceed both current EPA standards and WHO 101 

recommendations. Thus, further research is necessary to investigate to what degree lower levels of 102 

exposure seen across the U.S. may influence developmental changes in emotional behavior in today’s 103 

youth. 104 

Leveraging the large (N=11,876), nationwide, and socio-demographically and geographically diverse 105 

Adolescent Brain Cognitive Development (ABCD) Study® cohort (Jernigan et al., 2018), the current study 106 

aimed to examine whether air pollution exposure at ages 9-10 years may relate to longitudinal changes 107 

in behavioral and emotional problems over a 2-year follow-up period. The ABCD Study® comprises 21 108 

study sites across the United States and implements an identical protocol for recruitment and data 109 

collection of all participants (Garavan et al., 2018; Lisdahl et al., 2018). Given the extant literature (Cory-110 

Slechta et al., 2023; Reuben et al., 2021; Roberts et al., 2019; Zundel et al., 2022) and also limited 111 

availability of ABCD exposure data (C. C. Fan et al., 2021), our study focused on one-year annual 112 

average PM2.5 and NO2 exposures at ages 9-10 years. With relatively low concentrations of PM2.5 and 113 

NO2 in the ABCD Study (Cserbik et al., 2020; C. C. Fan et al., 2021), the current study aims to address 114 

links between air pollution and mental health in those regularly exposed to concentrations largely below 115 

EPA standards. Given previous findings (Brokamp et al., 2019; Brunst et al., 2019; B. Fan et al., 2019; 116 

Margolis et al., 2016; Rasnick et al., 2021; Yolton et al., 2019), we a priori chose to examine internalizing 117 

and externalizing summary scores from the Child Behavior Checklist (CBCL), as well as distinct 118 

internalizing syndrome subscales of anxious/depressed and withdrawn/depressed, and externalizing 119 

syndrome subscales of rule-breaking and aggressive behavior, and the independent subscale of 120 

attention, thus addressing a wide range of internalizing and externalizing behaviors. We hypothesized 121 

that higher exposure levels during late childhood would predict more emotional problems over the 2-year 122 

follow-up period.  123 
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2. Materials and methods  124 

2.1 Study Design and Participants  125 

The current study utilized data from the larger ongoing nationwide ABCD Study® (NDA 4.0 data release 126 

2021, https://abcdstudy.org/scientists/data-sharing/), which enrolled over 11,876 9- and 10-year-old 127 

participants across the USA from 2016-2018 with plans to follow subjects for up to 10 years (Garavan et 128 

al., 2018; Jernigan et al., 2018; Volkow et al., 2018). The 21 study sites obtained approval from their local 129 

Institutional Review Board (IRB) and a centralized IRB approval was obtained from the University of 130 

California, San Diego. Written informed consent was provided by each child’s parent or legal guardian 131 

(hereafter, “caregiver”); each child provided verbal assent. All ethical regulations were complied with 132 

during data collection and analysis. Primary inclusion criteria for ABCD Study participants included age 133 

(9.0 to 10.99 years at baseline visit), fluency in English, and the ability to complete the baseline visit. For 134 

the current analysis, we utilized data from the first 3 waves of annual data collection, with the additional 135 

inclusion criteria of having a valid primary residential address at baseline for all subjects. Given both the 136 

extant literature on potential neurotoxic and mental health effects (Cory-Slechta et al., 2023; Reuben et 137 

al., 2021; Roberts et al., 2019; Zundel et al., 2022) and data availability (C. C. Fan et al., 2021), the 138 

current study focused on investigating both PM2.5 and NO2 exposures. Given the distribution of the 139 

outcome data and analytic approach required for hypothesis testing (see section 2.5 below), complete 140 

predictors were required for each wave of data collection. A flowchart of our target population for our 141 

analyses can also be found in Supplemental Figure 1. We also selected data collected before March 1, 142 

2020, to avoid any potential confounding effects of stress on mental health outcomes related to the 143 

COVID-19 pandemic (Hamatani et al., 2022; Kiss et al., 2022; Yip et al., 2022). Lastly, we randomly 144 

selected one subject per family to reduce the hierarchical structure of our data from 4 levels (time point, 145 

subject, family, site) to 3 levels (time point, subject, site). This resulted in a final sample of 9,273 unique 146 

participants: 9,271 for baseline, 8,759 for 1-year follow-up, and 5,827 for 2-year follow-up (Table 1). A 147 

comparison of the overall ABCD cohort with our final analytical sample at baseline, 1-year, and 2-year 148 

follow-up can be found in Supplemental Table 1, Supplemental Table 2, and Supplemental Table 3, 149 

respectively. All variable names used in the following analyses are documented in Supplemental Table 150 
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Table 1. Demographics 152 

 Baseline 1-year follow-up 2-year follow-up 

N 9271 8759 5827 

Sex assigned at birth    

Female 4413 (47.6%) 4154 (47.4%) 2747 (47.1%) 

Male 4858 (52.4%) 4605 (52.6%) 3080 (52.9%) 

Age at data collection    

Mean (SD) 9.91 (0.62) 10.91 (0.63) 11.92 (0.64) 

Range 8.92 - 11.08 9.75 - 12.42 10.58 - 13.67 

Race/ethnicity    

Black 1363 (14.7%) 1221 (13.9%) 678 (11.6%) 

Hispanic 1958 (21.1%) 1800 (20.6%) 1198 (20.6%) 

Other 1191 (12.8%) 1126 (12.9%) 715 (12.3%) 

White 4759 (51.3%) 4612 (52.7%) 3236 (55.5%) 

Caregiver education    

< HS Diploma 460 (5.0%) 405 (4.6%) 257 (4.4%) 

HS Diploma/GED 899 (9.7%) 800 (9.1%) 460 (7.9%) 

Some College 2423 (26.1%) 2247 (25.7%) 1466 (25.2%) 

Bachelor 2310 (24.9%) 2217 (25.3%) 1551 (26.6%) 

Post Graduate Degree 3179 (34.3%) 3090 (35.3%) 2093 (35.9%) 

Caregiver employment    

Employed 6444 (69.5%) 6146 (70.2%) 4139 (71.0%) 

Stay at Home Parent 1612 (17.4%) 1516 (17.3%) 1002 (17.2%) 

Unemployed 539 (5.8%) 481 (5.5%) 299 (5.1%) 

Other 676 (7.3%) 616 (7.0%) 387 (6.6%) 

Neighborhood safety    

Mean (SD) 3.873 (0.976) 3.884 (0.971) 3.915 (0.948) 

Range 1.000 - 5.000 1.000 - 5.000 1.000 - 5.000 

Household income    

<$50k 2564 (27.7%) 2335 (26.7%) 1597 (27.4%) 

≥$50K & <$100K 2419 (26.1%) 2312 (26.4%) 1597 (27.4%) 

≥$100K 3514 (37.9%) 3418 (39.0%) 2307 (39.6%) 

Don’t know or refuse 774 (8.3%) 694 (7.9%) 429 (7.4%) 

Demographic composition of the final sample across three waves of data collection. 153 

  154 
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2.2 Estimation of Annual Air Pollution Exposure 155 

Details regarding the collection of residential addresses and linkage to one-year annual average ambient 156 

PM2.5 and NO2 have been previously published in detail by Fan and colleagues (2021). Briefly, daily 157 

pollutant estimates were derived at a 1-km2 resolution using hybrid spatiotemporal models that combine 158 

satellite-based aerosol optical depth models, land-use regression, and chemical transport models (Di et 159 

al., 2019, 2020). The cross-validation of these models with EPA monitored levels across the U.S. were 160 

found to perform well, with R2 Root Mean Square Error of 0.89 for PM2.5 annual averages and 0.84 for 161 

NO2 annual averages (Di et al., 2019, 2020). These daily estimates were then averaged over the 2016 162 

calendar year, when the children were aged 9-10 years-of-age and assigned to the geocoded primary 163 

residential address at the baseline ABCD study visit. PM2.5 is reported in micrograms per meter cubed 164 

(µg/m3) and NO2 is reported in parts per billion (ppb). For subjects who have data indicating their time 165 

lived at baseline address (N=9,027), the mean was 5.4 years (standard deviation = 3.75). Average yearly 166 

consistency of spatial contrast for each pollutant based on daily estimates at the 1-km2 resolution is also 167 

presented in the supplement (Supplemental Figure 2), as well as the variability in air pollution estimates 168 

across ABCD participants by site (Supplemental Figure 3). 169 

2.3 Emotional Behavior 170 

At each annual visit (baseline, 1-year follow-up, 2-year follow-up), the participant’s caregiver was asked 171 

to report on the child’s emotional behavior over the 6 months prior to each study visit using the Child 172 

Behavioral Checklist (CBCL) (Achenbach, 2009; Achenbach & Rescorla, 2001). The CBCL within the 173 

ABCD Study has 112 different items that each caregiver answers about their child (e.g., “Show little 174 

interest in things around him/her”) using a 3-point Likert-type scale (0 = Not True, 1 = Somewhat or 175 

Sometimes True, 2 = Very True or Often True). These answers are then used to calculate summary 176 

scores of internalizing and externalizing behaviors. Based on the prior air pollution and behavioral 177 

literature (Brokamp et al., 2019; Brunst et al., 2019; B. Fan et al., 2019; Margolis et al., 2016; Rasnick et 178 

al., 2021; Yolton et al., 2019; Zundel et al., 2022), we also chose to examine five additional syndrome 179 

subscale scores: anxious/depressed, withdrawn/depressed, rule-breaking behavior, aggressive 180 

behavior, and attention problems. Anxious/depressed and withdrawn/depressed subscales fall within the 181 

internalizing score, rule-breaking and aggressive behavior subscales fall within the externalizing score, 182 

and attention is an independent subscale. Each raw score is a whole number with higher integers 183 

indicating increased problem or emotional behaviors, across syndrome scores, such that syndrome score 184 

is each on the same scale. While there are age- and sex-normalized scores, we chose to utilize the raw 185 

scores to allow us to investigate developmental changes in these behaviors with age, as has been 186 

previously done when examining ABCD Study data (Barch et al., 2021). Importantly, the CBCL measures 187 

show good test-retest reliability (Pearson’s correlations mean = 0.9, min=0.82, max=0.94) and internal 188 

consistency was stable over a 12- and 24-month period (Pearson’s correlation 12-month mean = 0.74, 189 

24-month mean = 0.70) (Achenbach & Rescorla, 2001). The cross-informant agreement between parent 190 

and youth using CBCL items has been found to be strong across multi-cultural societies [Q correlations 191 

for U.S.= .84] and similar across internalizing and externalizing behaviors (Rescorla et al., 2013). The 192 

raw scores have different ranges by subscale: internalizing [0,64], externalizing [0,70], 193 

anxious/depressed [0,26], withdrawn/depressed [0,16], rule-breaking [0,34], aggressive [0,36], and 194 

attention [0,20], but all subscales use the same Likert scale units, with higher values indicative of greater 195 

problems. 196 
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2.4 Confounders and Covariates 197 

We have selected potential confounders based on both prior knowledge and current theories in 198 

environmental epidemiology using a directed acyclic graph (Greenland & Brumback, 2002) 199 

(Supplemental Figure 4). Specifically, we identified confounders that may predict emotional behavior 200 

and exposure to ambient air pollutants. All of these variables were reported by the child’s caregiver using 201 

the PhenX Toolkit (Echeverria et al., 2004; Mujahid et al., 2007). This list includes child’s sex, 202 

race/ethnicity (non-hispanic white, hispanic, non-hispanic black, other: includes American Indian/Native 203 

American, Alaska Native, Native Hawaiian, Guamanian, Samoan, Other Pacific Islander, Asian Indian, 204 

Chinese, Filipino, Japanese, Korean, Vietnamese, or Other Race not listed), indicators of family 205 

socioeconomic status (e.g., highest caregiver educational attainment, caregiver’s employment status, 206 

combined total annual household income), as well as perceived neighborhood quality. Highest caregiver 207 

educational attainment included <high school diploma, high school diploma or GED, some college, 208 

bachelor’s degree, or postgraduate degree. Caregiver’s employment status included employed (part- or 209 

full-time), stay at home parent, unemployed, or other (e.g., temporarily laid off; sick leave; retired; 210 

disabled, etc.). Combined total annual household income included less than or equal to $50,000, greater 211 

than $50,000 but less than $100,000, greater or equal to $100,000, or don’t know/refuse to answer. 212 

Perceived neighborhood quality was an average score of three-items assessing parent perspectives of 213 

how safe and free from crime and violence they felt their neighborhood is (Mujahid et al. 2007). Each of 214 

these variables’ baseline values were used in the model, to align with the timing of the available ambient 215 

air pollution estimates. To account for potential confounding of co-exposure, we also included the other 216 

air pollutant as an additional variable (i.e., when examining the influence of PM2.5-by-age on CBCL 217 

outcomes, NO2 is added to the model, and vice versa). Importantly, multicollinearity was not an issue in 218 

adjusting for the other pollutant in the model as the Pearson correlation coefficient between the baseline 219 

annual pollutant concentrations of PM2.5 and NO2 across all sites was low (r = 0.22). 220 

 221 

2.5 Analyses 222 

All statistical analyses were implemented in R (version 4.1.2) (R Core Team, 2021). Initial descriptive 223 

and exploratory analysis were conducted to check all data for potential errors and outliers, and to assess 224 

variable distributions required to satisfy modeling assumptions and understand correlations. To 225 

investigate how annual PM2.5 and NO2 moderate emotional development of adolescents over 3 visits 226 

spaced 1-year apart, we used a multilevel (i.e., mixed effects) modeling approach to account for the 227 

repeated measures. We verified our models were appropriate by checking model assumptions post 228 

analyses based on prior published methodology (Cameron & Trivedi, 2013; Garay et al., 2011; Hilbe, 229 

2011).  230 

2.5.1 Reasoning for Modeling Choice 231 

While previous cross-sectional studies examining CBCL outcomes and air pollution have examined the 232 

CBCL t-scores (F. P. Perera et al., 2011, 2012), raw CBCL scores are required to better account for 233 

developmental changes in emotional behaviors over time when using a repeated measures design  234 

(Barch et al., 2021). Furthermore, when multilevel approaches are required, a common modeling 235 

approach is to use a linear mixed-effects model, but since CBCL outcomes are naturally zero-inflated 236 

(Supplemental Figure 5) and thus over-dispersed (over-dispersion quotient ranges from 2.84-17.29), 237 

this can lead to artificial inflation of the coefficients’ significance (LAND et al., 1996; Stroup, 2016; 238 
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Swartout et al., 2015). Thus, we utilized CBCL raw scores as count data and employed a zero-inflated 239 

negative binomial (ZINB) model, which adds an extra parameter that accounts for the over-dispersion 240 

present (Xu et al., 2017). The glmm.zinb() function was used within the NBZIMM package (version 1.0) 241 

(https://github.com/nyiuab/NBZIMM); a manuscript detailing the development of this package was also 242 

published (Zhang & Yi, 2020). This modeling approach has been used in numerous studies with zero-243 

inflated health data (Preisser et al., 2016; Sheu et al., 2004), and specifically when examining mental 244 

health outcomes  (Kumagai et al., 2021; Vyas et al., 2020). For even further reading on the ZINB 245 

approach, we have cited additional readings (Fang et al., 2016; Stroup, 2012; Yau et al., 2003; Young et 246 

al., 2022; Zhang & Yi, 2020).  247 

2.5.2 Final dataset for ZINB model 248 

To implement the ZINB model, complete predictors across timepoints (i.e., no missing values for each 249 

subject at each wave of data collection) is required; therefore, listwise deletion was used to remove 250 

incomplete data by wave of data collection, making sure at each wave of data collection, each subject 251 

had a CBCL outcome score, age at session, race/ethnicity, sex at birth, PM2.5 level at year of baseline 252 

visit, NO2 level at year of baseline visit, caregiver's highest level of education at baseline, caregiver's 253 

employment status at baseline, perceived neighborhood safety at baseline, and household income at 254 

baseline. Since we only had data for our main predictors – PM2.5 and NO2 – at the baseline visit, our 255 

environmental covariates and confounders were also only from the baseline visit. Following our initial 256 

cleaning steps, creating a dataset across timepoints with complete predictors led to 6%, 5%, and 3% of 257 

missing data for the baseline, 1-year, and 2-year follow-up visits, respectively. Bennett (2001) states that 258 

greater than 10% missingness could lead to bias within the statistical analysis and prior published 259 

literature suggest 5% (on average) missingness is negligible (Jakobsen et al., 2017; Schafer, 1999). 260 

Therefore, given the limited amount of missing data, we chose not to perform multiple imputation. 261 

2.5.3 Age-only ZINB models 262 

For the main analysis, the ZINB model combines two models: 1) zero-inflated model, similar to a logistic 263 

regression, that evaluates the likelihood of being in the certain-zero (i.e., no problems) as compared to 264 

the non-zero category (i.e., exhibits problems), and 2) count model, assuming a negative binomial 265 

distribution, that evaluates the non-zero CBCL subscale scores (i.e., magnitude of problems). Initially, 266 

age-only models were performed to establish changes in CBCL outcomes from baseline and two 1-year 267 

follow-up periods. These models investigated the main effect of age on each CBCL outcome controlling 268 

for necessary covariates in both the zero-inflated and count portions of the model (sex-at-birth, 269 

race/ethnicity, highest caregiver educational attainment at baseline, caregiver’s employment status at 270 

baseline, perceived neighborhood safety at baseline, and the combined total annual household income 271 

at baseline). For the random effects within the zero-inflated portion of the model, we only included ABCD 272 

site since subjects within the certain-zero group were not strongly clustered by subject (low intraclass 273 

correlation coefficients (ICC) for all CBCL outcomes: 0.070-0.107). For the random effects within the 274 

count model, subject was nested within a random effect of site to account for the within-subject similarities 275 

over time in those with non-zero data (ICCs ranging from 0.506-0.710; this medium-high ICC implies a 276 

clustering structure of subject within the non-zero data). For ease of interpretation, age was centered at 277 

9 years, the youngest integer age in our cohort. 278 
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2.5.4 Age-by-air pollutant ZINB models 279 

To investigate if air pollution modifies emotional problems over time, we added in an interaction between 280 

age and each air pollutant (PM2.5 or NO2). For both the zero-inflated model and the count model we 281 

utilized the fixed effects of each pollutant (PM2.5 or NO2), age, pollutant-by-age, while adjusting for the 282 

same potential confounders as mentioned above; each pollution-by-age model also corrected for the 283 

other pollutant (e.g., for the PM2.5-by-age model, NO2 was added as a confounder in addition to the 284 

previously mentioned covariates, and vice versa for the NO2-by-age model). For the random effects within 285 

the zero-inflated portion of the model, we again only included ABCD site and for the random effects within 286 

the count model, again, subject was nested within a random effect of site. PM2.5 and NO2 were centered 287 

to the levels recommended by the WHO, 5 µg/m3 and 5.33 ppb, respectively, and age was again centered 288 

at 9 years. For models where the interaction term between pollution and age was not significant for both 289 

the zero-inflated and count portion of the model, the interaction term was dropped, and the model was 290 

run to examine the main effect of pollution.  291 

2.5.5 Type-1 error correction  292 

For all above models, to avoid type-1 errors, all p-values of interest were corrected for multiple 293 

comparisons across the same model type using the false-discovery rate of 5% by utilizing the Benjamini-294 

Hochberg procedure (pFDR < 0.05)  (Benjamini & Hochberg, 1995), which has been used previously with 295 

a ZINB modeling approach (Subramaniyam et al., 2019). All model assumptions post analyses were also 296 

conducted based on prior published methodology (Cameron & Trivedi, 2013; Garay et al., 2011; Hilbe, 297 

2011).  298 

2.5.6 Model interpretation 299 

In terms of interpreting our PM2.5 results, we focused on displaying the predictions of the EPA annual 300 

daily standard (PM2.5 = 12 µg/m3) as compared to the WHO’s recommended target level of 5 µg/m3. For 301 

NO2, our sample’s exposure levels were much less than the 53 ppb previously set by EPA in 1971 (US 302 

EPA, 2016). Thus, for NO2 we focused on comparing predictions at 26.1 ppb, based on the 90th percentile 303 

of our sample, as compared to the WHO recommended 5.33 ppb. Lastly, given that very large sample 304 

sizes tend to identify very small differences as significant, we were sure to also interpret our results in 305 

context of effect sizes in order to assess if results were likely to be clinically significant as defined by 306 

(Jacobson & Truax, 1991), which requires not only statistical significance, but also a change either in the 307 

range of the “dysfunctional population” or “within the range of the functional population”. 308 

3. Results 309 

Descriptives of our analytical dataset separated by baseline, 1-year, and 2-year follow-up can be found 310 

in Table 1. The mean for PM2.5 for the total current sample was 7.706 µg/m3 (range=1.722-15.902 311 

SD=1.571) and for NO2 it was 18.595 ppb (range=0.729-37.940; SD=5.571), which on average falls 312 

significantly below the EPA standards (p’s<0.0001) of 12 µg/m3 and 53 ppb, respectively. Furthermore, 313 

descriptives of CBCL outcomes across each collection wave are presented in Supplemental Table 5. 314 

3.1 Internalizing Behavior 315 

3.1.1 Changes in internalizing behavior with age 316 
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There was a significant main effect of age for the zero-inflated portion of the model, demonstrating a 45% 317 

increase in the likelihood of having no internalizing problems (i.e., obtaining a true-zero) with increasing 318 

age of the child from 9 to 12 years-old (Figure 1).  For individuals who did experience internalizing 319 

symptoms (i.e., modeled by the count portion of the model), there was no significant change in the 320 

number of internalizing problems reported from 9 to 12 years of age. 321 

3.1.2 Moderating effects of air pollution 322 

The aforementioned age effects in internalizing problems from 9 to 12 years-of-age was significantly 323 

moderated by PM2.5 and NO2 (Figure 1, Supplemental Tables 6 and 8). In contrast to our hypothesis, 324 

higher levels of exposure tended to relate to decreases in the probability of exhibiting any problems as 325 

well as the number of problems over time between the ages of 9-12 years. Specifically, a PM2.5 level of 326 

12 µg/m3 (EPA’s standard) predicted a 190% increase in the likelihood of having no internalizing 327 

problems, as well as a 13% decrease in the number of internalizing problems if problems were present, 328 

from 9 to 12 years of age. A similar pattern was also seen for NO2, with NO2 levels of 26.1 ppb (90th 329 

percentile of sample) relating to a 106% increased likelihood of having no internalizing problems, as well 330 

as a 6% decrease in the number of problems, if internalizing behaviors were present, from 9 to 12 years-331 

of-age. Moreover, exposure to lower PM2.5 or NO2 levels (5 µg/m3 and 5.33 ppb based on WHO 332 

recommendations) predicted a higher likelihood of having internalizing symptoms (e.g., as seen by a 333 

relative decrease in the probability of the caregiver reporting no internalizing problems), as well as an 334 

increase in number of internalizing problems, from 9 to 12 years of age. Although these results are 335 

counterintuitive in that greater exposure levels were linked with less problems over time, it is important 336 

to note the effect sizes of these findings, as the detected changes in probability of exhibiting internalizing 337 

problems (i.e., true-zero score) ranged from a 1-4% difference and the magnitude of the number of CBCL 338 

internalizing problems was a mere 1-point change. 339 

3.1.3 Internalizing subscales: Anxious/Depressed and Withdrawn/Depressed 340 

These subscales both fall within the internalizing score, therefore, unsurprisingly, a similar pattern was 341 

seen for age-only and moderating effects of air pollution for the anxious/depressed problems 342 

(Supplemental Table 6 and 8). A main effect of age was seen showing an increase of 185% in the 343 

likelihood of having no anxious/depressed symptoms (i.e., score of 0), and if symptoms were present, an 344 

8% decrease was seen in the number of problems, from 9-12 years-of-age (Supplemental Figure 6). 345 

PM2.5 and NO2 both moderated these age effects of anxious/depressed symptom scores with similar 346 

patterns as seen with overall internalizing problems. 347 

A noticeably different pattern was seen for both age-only and moderating effects of air pollution of the 348 

withdrawn/depressed subscale. More in line with the literature, the likelihood of having no 349 

withdrawn/depressed problems decreased over time, as well as a 34% increase in the number of 350 

problems, between the ages of 9-12 years, suggesting a slight increase in the probability of exhibiting 351 

withdrawn/depressed problems and a greater number of withdrawn/depressed symptoms with age 352 

across early adolescence (Supplemental Figure 6). Both PM2.5 and NO2 exposure moderated age-353 

related changes in withdrawn/depressed problems. When examining the probability of having 354 

withdrawn/depressed symptoms, higher levels of NO2 exposure was again associated with a greater 355 

likelihood of having no withdrawn/depressed symptoms from ages 9-12 years as compared with lower 356 

levels of exposure; PM2.5 though, did not moderate this age effect. For individuals who exhibited 357 
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withdrawn/depressed problems, both NO2 and PM2.5 moderated the effect of age, with again lower levels 358 

of NO2 and PM2.5 predicting greater increases in the number of withdrawn/depressed problems from ages 359 

9-12 years as compared with higher levels of exposure. However, again, the effect sizes for exposure on 360 

both the change in probabilities and the number of problems from 9-12 years-of-age were minimal (i.e., 361 

1-4% change in probability and 1-point increase in number of problems).   362 

 363 

Figure 1 Results for internalizing behavior. A) Displays the estimated probability of being in the absolute zero 364 
category as compared to the non-zero category (i.e., any value for CBCL scores). B) Displays the estimated CBCL 365 
score for subjects whose scores were in the non-zero category. Numerous results are presented which include: 1) 366 
Age only which displays the main effects of age excluding air pollution with all other variables held constant from 367 
9 to 12 years-of-age; 2) PM2.5-by-age interaction which displays differences in 9 and 12 years-of-age for the WHO 368 
recommended PM2.5 levels - 5 µg/m3 (light blue) - versus the EPA’s - 12 µg/m3 (dark blue); 3) NO2-by-age 369 
interaction which displays differences in 9 and 12 years-of-age for the WHO recommended NO2 levels - 5.33 ppb 370 
(light purple) - versus the 90th percentile NO2 level in our sample - 26.1 ppb (dark purple) (The EPA level is 53 ppb 371 
which is outside our sample range). All graphs display percent change with age. All covariates held constant at the 372 
largest N category (sex = “male”, race/ethnicity = ‘White’, caregiver education = ‘Post Graduate Degree’, caregiver 373 
employment = “Employed”, and household income = “≥$100K”), and mean for neighborhood safety (𝑥 = 3.88); for 374 
interaction models, NO2 is set to the WHO standard (5.33 ppb) for the PM2.5-by-age models and PM2.5 is set to the 375 
WHO standard (5 µg/m3) for the Age-only and NO2-by-age models; p-valueFDR = p-value for predictor graphed once 376 
FDR corrected for multiple comparisons; N.S. = not significant. 377 
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3.2 Externalizing Behavior 378 

3.1.1 Changes in externalizing behavior with age 379 

There was an 88% increase in the likelihood of having no externalizing problems (i.e., obtaining a true-380 

zero) from 9 to 12 years-old. For individuals who did exhibit externalizing problems (count portion of the 381 

model), a 12% decrease in the number of externalizing problems was seen from 9-12 years-of-age 382 

(Figure 2). 383 

3.1.2 Moderating effects of air pollution 384 

PM2.5 did not significantly moderate the aforementioned age effects in externalizing behavior from 9-12 385 

years. However, we did find that, regardless of the age of the child, that a main effect of PM2.5 was seen, 386 

with a 60% increase in the likelihood of no externalizing problems at a PM2.5 concentration of 12 as 387 

compared to 5 µg/m3 (Figure 2 and Supplemental Table 7). A main effect of PM2.5, however, was not 388 

seen for the number of externalizing problems. For NO2, exposure levels did not impact the likelihood of 389 

having no externalizing problems (i.e., obtaining a true-zero) from 9 to 12 years-old, but NO2 did moderate 390 

the number of externalizing problems seen with age. Specifically, higher levels of NO2 were associated 391 

with greater decreases in externalizing problems from ages 9-12 years of age as compared to lower 392 

levels of NO2 exposures (Figure 2 and Supplemental Table 8). Though, again, the magnitude of these 393 

changes equates to less than a 1-point change in the number of problems. 394 

3.1.3 Attention Problems and Externalizing Subscales: Rule-breaking and Aggressive Behavior 395 

There were significant main effects of age for all externalizing subscale behaviors, with an increase in 396 

the likelihood of having none of these problems from 9-12 years-of-age. This change in likelihood of 397 

problems with age was largest for rule breaking (112%), followed by aggressive behavior (106%), and 398 

then attention problems (58%), respectively. For those reporting these problems, a 10% decrease was 399 

seen for the number of rule-breaking and attention problems, while a 14% decrease was seen for 400 

aggressive behaviors, with age (Supplemental Figure 7).  401 

Only NO2 was found to moderate the effects of age on these types of behaviors, albeit slight differences 402 

were seen as to the directionality of these effects (Supplemental Figure 7 and Supplemental Table 8). 403 

Contrary to our hypotheses, higher levels of NO2 exposure were related to a greater likelihood of having 404 

no rule-breaking behavior from 9-12 years as compared to lower levels of NO2 exposure. Alternatively, in 405 

contrast to all other outcomes, but in line with our hypothesis, a greater likelihood of having no attention 406 

problems from 9-12 years was seen at lower as compared to higher levels of NO2 exposure. Again, higher 407 

levels of NO2 exposure were associated with greater decreases in the number of rule-breaking, 408 

aggressive, and attention problems from 9-12 years-of-age as compared to lower levels of NO2 exposure. 409 

Since PM2.5 did not moderate age-related changes in these behaviors, we investigated the main effect of 410 

PM2.5 regardless of age. We found greater likelihood of having no aggressive or attention problems with 411 

higher as compared to lower levels of PM2.5 exposure (Supplemental Figure 7 and Supplemental Table 412 

7). Again, the magnitude of the air pollution effects were marginal, as the differences seen in the 413 

probabilities of having problems was on the order of 1% and the number of problems were less than a 1-414 

point change. 415 
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 416 

Figure 2 Results for externalizing behavior. A) Displays the estimated probability of being in the absolute zero 417 
category as compared to the non-zero category (i.e., any value for CBCL scores). B) Displays the estimated CBCL 418 
score for subjects whose scores were in the non-zero category. Numerous results are presented which include: 1) 419 
Age only which displays the main effects of age excluding air pollution with all other variables held constant from 420 
9 to 12 years-of-age; 2) PM2.5-by-age interaction which displays differences in 9 and 12 years-of-age for the WHO 421 
recommended PM2.5 levels - 5 µg/m3 (light blue) - versus the EPA’s - 12 µg/m3 (dark blue); 3) NO2-by-age 422 
interaction which displays differences in 9 and 12 years-of-age for the WHO recommended NO2 levels - 5.33 ppb 423 
(light purple) - versus the 90th percentile NO2 level in our sample - 26.1 ppb (dark purple) (The EPA level is 53 ppb 424 
which is outside our sample range). All graphs display percent change with age. All covariates held constant at the 425 
largest N category (sex = “male”, race/ethnicity = ‘White’, caregiver education = ‘Post Graduate Degree’, caregiver 426 
employment = “Employed”, and household income = “≥$100K”), and mean for neighborhood safety (𝑥 = 3.88); for 427 
interaction models, NO2 is set to the WHO standard (5.33 ppb) for the PM2.5-by-age models and PM2.5 is set to the 428 
WHO standard (5 µg/m3) for the Age-only and NO2-by-age models; p-valueFDR = p-value for predictor graphed once 429 
FDR corrected for multiple comparisons; N.S. = not significant. 430 

Discussion  431 

In the current longitudinal study, we leveraged a large, nationwide longitudinal cohort of children to 432 

examine how exposure to both PM2.5 and NO2 at ages 9-10 years affects age-related changes in 433 

behavioral problems as reported on the CBCL over a 2-year follow-up period. To characterize the 434 

developmental trajectory of behavioral problems within our sample, as well as aid interpretation of the 435 

pollutant effects, we first revealed an age-related decrease in the likelihood of having internalizing and 436 
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externalizing problems as reported on the CBCL from ages 9-12 years-old (in the zero portion of the 437 

model), as well as fewer number of internalizing and externalizing problems over time if behaviors were 438 

present (in the count portion of the model). Interestingly, we saw the opposite effect in the 439 

withdrawn/depressed syndrome scale, where increasing age was related to an increased likelihood of 440 

reporting withdrawn/depressed problems, as well as more problems, when present, from ages 9-12 years 441 

old. In contrast to our hypothesis, higher levels of PM2.5 and NO2 exposure did not modify these age-442 

related patterns to result in a greater likelihood or frequency in the number of problems over time. 443 

Unexpectedly, higher exposure was linked to lower likelihood of having problems as well as slightly fewer 444 

problems over time for most CBCL outcomes. In fact, only the association between NO2 exposure and 445 

attention problems was in the expected direction, with lower NO2 exposure predicting an increased 446 

likelihood of zero attention problems with age as compared with higher exposure. While the directions of 447 

the relationships between the pollutants and CBCL outcomes are counterintuitive, it is important to 448 

consider the magnitude of the effect sizes in such a large sample, rather than the statistical significance 449 

of these findings. This is evident by the largest effect we found, which was the effect of PM2.5 on the 450 

probability of internalizing symptoms arising at age 12. In children with low PM2.5 exposure at ages 9-10 451 

years, the probability of not having problems at age 12 was 1.7%, while in those exposed to high PM2.5 452 

at ages 9-10 years the probability of not having problems at age 12 was 4.6%. Not only is the difference 453 

in probability only 2.9%, but the likelihood of having any problems regardless of exposure level falls below 454 

5%. Similarly, the effect sizes were extremely small for the quantitative differences in the number of 455 

problems, with higher pollution exposure associated with a decrease of less than a single point difference 456 

on any given scale. Given that the CBCL uses a 3-point Likert scale (i.e., 0 = Not True, 1 = Somewhat or 457 

Sometimes True, 2 = Very True or Often True), a 1-point change is likely clinically negligible, may fall 458 

within the range of measurement error, and may not have real-world implications. Thus, against our 459 

hypothesis, there was no evidence that low-level exposures to PM2.5 and NO2 at ages 9-10 years resulted 460 

in increased emotional problems from ages 9-12 years. 461 

Our study focuses on childhood exposure at ages 9-10 years old – a developmental period currently 462 

underrepresented in the literature. About 26% of studies on pollution-related differences in mental health 463 

problems cover this age range, despite the high incidence of psychiatric diagnoses in early adolescence 464 

(Kessler et al., 2005; Solmi et al., 2022; Zundel et al., 2022). Yet even studies focused on linking PM2.5 465 

and NO2 exposure and emotional behaviors in youth have reported mixed findings. Some of the earliest 466 

longitudinal research in this area comes from Columbia Center for Children's Environmental Health 467 

(CCCEH) longitudinal cohort study of African American and Dominican women in New York City. These 468 

essential studies found that prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAHs), 469 

which come from fossil fuel combustion, was linked to greater CBCL reported symptoms of 470 

anxious/depressed and attention problems at ages 4-5 and 6-7 years-old children (F. P. Perera et al., 471 

2011, 2012). However, in a more recent study that included using either the Strength and Difficulties 472 

Questionnaire or the CBCL in 8 European population-based birth cohorts, prenatal and postnatal air 473 

pollution, including PM2.5 and NO2 exposure, were not found to relate to the borderline clinical range of 474 

depression, anxiety, and aggression in >13,000 children ages 7-11 years-old (Jorcano et al., 2019). In 475 

fact, higher postnatal exposure was linked with overall lower odds of having symptoms in the 476 

borderline/clinical range when assessed cross-sectionally with the CBCL; albeit the results did not reach 477 

statistical significance. Similar findings were also noted when using the quantitative scores of the 478 

symptom scales (Jorcano et al., 2019) as implemented in the current analysis. A similar study assessing 479 

ADHD symptoms in children 3-10 years-old using these same 8 European birth cohorts also found no 480 
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association, or even decreased risk, between prenatal air pollution exposure and ADHD (Forns et al., 481 

2018). Given the positive publication bias, it is likely that more evidence of null associations between 482 

exposure and behavior problems exists and has been relegated to the so-called file drawer (Mlinarić et 483 

al., 2017). Furthermore, a recent study using similar methodology to our own found that higher childhood 484 

and prenatal exposure to PM2.5 and NO2, in addition to other pollutants, was associated with fewer 485 

internalizing, externalizing, and attention problems in adolescence regardless if CBCL questionnaire was 486 

reported by parent or child (Kusters et al., 2022). Thus, our current findings are in line with these more 487 

recent multi-research site-based studies. Similar to these studies, it seems very unlikely that the 488 

significant effects found in the current study are in fact reflective of a protective effect given both 1) the 489 

absence of any postulated mechanism for a protective element of air pollution exposure, as well as 2) 490 

the extremely small magnitude of change detected in part to our large sample size and the resulting 491 

statistical power. It is feasible that both the previous findings as well as the current results could be due 492 

to residual negative confounding (Forns et al., 2018; Jorcano et al., 2019), although it is important to note 493 

that in each case the analyses adjusted for many essential sociodemographic variables (i.e., income, 494 

caregiver educational attainment, etc.) that are known to be associated with air pollution exposure and 495 

mental health in children. Thus, if residual negative confounding is at play, unexplained factor(s) should 496 

be explored that may exist across various cities and within various western populations (e.g., U.S., 497 

Germany, Italy, Spain, etc.). Despite the CBCL being a widely used and valid measure in both clinical 498 

and research settings (Achenbach & Rescorla, 2001; Wolraich et al., 2008), context and informant 499 

differences have been reported in using the CBCL items to assess emotional and behavioral problems 500 

in youth (Achenbach et al., 1987). Albeit Kusters et al. (2022) findings suggest air pollution effects on 501 

emotional behaviors are consistent regardless of parent or youth (ages 13-16 years) report. Nonetheless, 502 

it is feasible that caregiver-report of emotional problems in the current study may contribute to 503 

misclassification bias that could contribute towards failing to reject the null hypothesis. Thus, additional 504 

studies are warranted using more objective measures, such as clinician-based interviews, of children’s 505 

mental health and wellbeing. 506 

Putting our current results in the larger context of the literature, the importance of windows of exposure 507 

and the timing of behavior continue to prevail as to what role air pollution may play in terms of risk for 508 

developing mental health problems. That is, while the current study shows a one-year annual average of 509 

air pollution exposure during the transition to adolescence does not substantially increase the age-related 510 

clinical risk of mental health problems over a 2-year follow-up period, it is still feasible that exposure 511 

during this period of development may ultimately predispose an individual to risk for developing 512 

psychopathology later in adolescence or early adulthood. Air pollution, then, may influence ongoing brain 513 

development and plasticity across adolescence, due to the protracted development of regions and 514 

networks associated with mental health conditions and psychopathology (e.g., hippocampus, amygdala, 515 

default mode network, frontoparietal network, and salience network) (Menon, 2011, 2013). A number of 516 

MRI studies suggest that exposure to ambient air pollution is linked to differences in brain macro- and 517 

microarchitecture as well as functional brain network connectivity (Binter et al., 2022; Burnor et al., 2021; 518 

Cotter et al., 2023; Essers et al., 2023; Guxens et al., 2018, 2022; Herting et al., 2019; Lubczyńska et al., 519 

2021; Pérez-Crespo et al., 2022; Sukumaran et al., 2023). Thus, it is feasible that these differences may 520 

be early neural biomarkers of PM2.5 exposure-related risk prior to any overt changes in behavior. As 521 

previously mentioned, the idea that exposure during adolescence may ultimately predispose an individual 522 

to later develop mental health disorders parallels the findings that higher levels of air pollution during 523 

childhood and adolescence predict later onset of major depressive disorder (Roberts et al., 2019) and 524 
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other internalizing, externalizing, and thought disorder symptoms at age 18 years (Reuben et al., 2021). 525 

In fact, the increased incidence of psychopathology and psychiatric diagnoses seen in adolescence 526 

typically occurs in mid-adolescence, around age 14 and a half (Solmi et al., 2022), which is above the 527 

upper limit of ages included here. However, consortium efforts to eventually estimate lifetime air pollution 528 

exposure (C. C. Fan et al., 2021) in the coming years, in addition to active follow-up of ABCD cohort 529 

participants through early adulthood, will soon allow researchers to more formally test this hypothesis. 530 

Moreover, the results of the current study may also suggest that while PM2.5 and NO2 exposure at 9-10 531 

years does not meaningfully impact the age-related relative risk of emotional problems at a population-532 

level, it is feasible that exposure during this time may have harmful effects in children who are more 533 

susceptible, due to either genetic risk or due to co-exposure to other adverse environmental threats. 534 

Thus, more research is warranted taking a more integrated neural exposome approach to understanding 535 

adolescent environmental exposures and risk for psychopathology (Tamiz et al., 2022).  536 

The current study has several strengths. Specifically, the statistical approach and data used here 537 

contribute to a rigorous assessment of longitudinal, age-related behavioral and emotional problems 538 

associated with one-year annual air pollution exposure during the transition to adolescence. While 539 

standardized scores are often used to study dimensions of psychopathology and behavior between-540 

subjects, we utilized raw longitudinal CBCL scores in the current study to better capture developmental 541 

change (Barch et al., 2021). However, raw CBCL scores are zero-inflated and over-dispersed in 542 

normative developmental samples, violating assumptions of general linear models. Our application of a 543 

zero-inflated negative binomial (ZINB) model combines the strengths of a logistic regression model with 544 

a negative binomial model, allowing robust estimates of associations between air pollution and the 545 

emergence of any behavioral or emotional problems (i.e., scores equal to zero vs. scores greater than 546 

zero) as children age, and how air pollution is related to the magnitude or number of behavioral or 547 

emotional problems (i.e., the range of scores greater than zero). Second, our large, nationwide sample 548 

between the ages of 9-12 years provides more geographically diverse estimates of NO2 and PM2.5. This 549 

is an improvement over the smaller, localized samples common to air pollution research that pervade the 550 

literature, as sources and concentrations of pollutants vary across locations (Snider et al., 2016) and the 551 

health effects of PM2.5 vary by source (Holguin, 2008; Sarnat et al., 2008). Although the final sample used 552 

here is not fully representative of the larger US population (Garavan et al., 2018), it has greater 553 

generalizability compared to smaller scale studies of air pollution and mental health. Further, the models 554 

were adjusted for numerous socioeconomic and lifestyle variables that are known to be associated with 555 

both exposure and emotional behaviors examined in the current study. 556 

A limitation of the current study is that the estimates of air pollution used here only represent a sum 557 

across components of PM2.5 and capture an average of exposure over one year at the time of study 558 

enrollment. Moreover, our study examined exposure levels that are largely below the U.S EPA standards, 559 

which may only apply to approximately 50% of high-income countries in North America, Europe, and the 560 

Western Pacific, and does not readily apply to existing levels of exposure in many low- and middle-561 

income countries (World Health Organization, 2018). As previously mentioned, different geographical 562 

locations have different compositions of PM2.5 and the individual components of PM2.5 have different 563 

effects on human health. It is possible that our results represent an amalgamation of the unique effects 564 

of individual components of PM2.5 (e.g., elemental carbon, silicon, lead), contributing to our 565 

counterintuitive findings. There is also a substantial body of literature quantifying the effects of prenatal 566 

air pollution exposure and acute exposure (i.e., days) effects on various mental health outcomes 567 
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(Braithwaite et al., 2019; Zundel et al., 2022), which are not available in the 4.0 data release of the ABCD 568 

Study. Moving forward, incorporating prenatal exposure, as well as acute estimates, could help elucidate 569 

potential nuances that exist in the timing of exposure on the emergence of symptomatology across 570 

adolescence, in addition to the prevalence of acute mental health crises (for review, see Heo et al., 2021). 571 

Another limitation is that the data included here were collected from 2016 until March 2020, at the 572 

beginning of the global COVID-19 pandemic. We chose to exclude data collected after March 2020, to 573 

avoid the confounding effect of pandemic-induced emotional and behavioral problems in this sample 574 

(Hamatani et al., 2022). The onset of the pandemic complicated data collection, as well, and may have 575 

contributed to missingness in data collected at later follow-up visits. For example, although sample 576 

demographics in the current study were similar to the larger ABCD cohort (Supplemental Tables 1-3) 577 

and our overall missingness was small (≤6%), we cannot rule out the possibility of selection bias 578 

influencing our results. Not all participants had complete data at each wave of data collection, and follow-579 

up waves had slightly higher representation of white children, with greater caregiver educational 580 

attainment and household income compared to enrollment at baseline. However, due to this small 581 

proportion of missing data, that bias is expected to be small or negligible. Moreover, Asian, American 582 

Indian/Alaskan Native, and Native Hawaiian/Pacific Islander populations are underrepresented in the 583 

ABCD Study, while families with higher total household incomes and highly educated caregivers are 584 

over-represented. Thus, additional studies are needed that include children who may be especially 585 

susceptible to air pollution related effects because of potential compounding effects of disadvantage due 586 

to poverty and minority-related stressors stemming from racism (Hajat et al., 2015). Although both the 587 

exposure models used herein as well as the CBCL questionnaire have shown to have both good validity 588 

and reliability and the current study adjusted for key confounders, it is feasible that measurement error 589 

or residual confounding may have contributed to the current unexpected findings. Lastly, additional 590 

studies are also warranted to examine if annual averages to higher levels of exposure experienced in 591 

low- and middle-income countries may influence emotional wellbeing in developing children. 592 

Conclusions 593 

There was no evidence that low-level exposures to PM2.5 and NO2 at ages 9-10 years resulted in greater 594 

emotional problems from ages 9-12 years. Future research with additional waves of data extending into 595 

late adolescence and early adulthood, as well as incorporating cumulative exposure estimates are 596 

necessary to further our understanding between air pollution and mental health during adolescence. 597 
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Highlights: 

● We examined one-year air pollution exposure on changes in emotion in 9-12 year-olds 

● Concentrations of air pollution exposure were below U.S. EPA standards 

● Annual measurements of emotional problems were investigated over 3 years  

● Overall, less internalizing and externalizing behavior problems seen over time 

● Our results do not support the idea that air pollution increases problems over time 
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