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Abstract

Background: Air pollution is linked to neurodevelopmental delays, but its association with 

longitudinal changes in brain network development has yet to be investigated. We aimed to 

characterize the effect of PM2.5, O3, and NO2 exposure at ages 9–10 years on changes in 

functional connectivity (FC) over a 2-year follow-up period, with a focus on the salience (SN), 

frontoparietal (FPN), and default-mode (DMN) brain networks as well as the amygdala and 

hippocampus given their importance in emotional and cognitive functioning.
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Methods: A sample of children (N = 9,497; with 1–2 scans each for a total of 13,824 

scans; 45.6% with two brain scans) from the Adolescent Brain Cognitive Development (ABCD) 

Study® were included. Annual averages of pollutant concentrations were assigned to the child’s 

primary residential address using an ensemble-based exposure modeling approach. Resting-state 

functional MRI was collected on 3T MRI scanners. First, developmental linear mixed-effect 

models were performed to characterize typical FC development within our sample. Next, single- 

and multi-pollutant linear mixed-effect models were constructed to examine the association 

between exposure and intra-network, inter-network, and subcortical-to-network FC change over 

time, adjusting for sex, race/ethnicity, income, parental education, handedness, scanner type, and 

motion.

Results: Developmental profiles of FC over the 2-year follow-up included intra-network 

integration within the DMN and FPN as well as inter-network integration between the SN-FPN; 

along with intra-network segregation in the SN as well as subcortical-to-network segregation 

more broadly. Higher PM2.5 exposure resulted in greater inter-network and subcortical-to-network 

FC over time. In contrast, higher O3 concentrations resulted in greater intra-network, but less 

subcortical-to-network FC over time. Lastly, higher NO2 exposure led to less inter-network and 

subcortical-to-network FC over the 2-year follow-up period.

Conclusion: Taken together, PM2.5, O3, and NO2 exposure in childhood relate to distinct 

changes in patterns of network maturation over time. This is the first study to show outdoor 

ambient air pollution during childhood is linked to longitudinal changes in brain network 

connectivity development.
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1. Introduction

Ambient air pollutants are increasingly being recognized as consequential neurotoxicants, 

in addition to their link to adverse cardiovascular and pulmonary health (reviews by 

Castagna et al. 2022; Herting et al. 2019). The Environmental Protection Agency (EPA) 

tracks pollutants, including particulate matter (PM) of different size fractions, specifically 

particulate matter (PM) with diameter < 10 μm (PM10) and < 2.5 μm (PM2.5). Among 

these, the World Health Organization’s (WHO) Global Burden of Disease Project recognizes 

PM2.5 as a leading cause of adverse health outcomes; its small size allows for particles to be 

inhaled deeply into the lungs and enter the bloodstream, causing systemic inflammation and 

affecting multiple biological systems (Cohen et al. 2005). Outdoor PM2.5 comes primarily 

from combustion of gasoline, oil, diesel fuel, coal, or wood. Other pollutants of neurological 

concern tracked by the EPA include ground level ozone (O3), a key component of smog 

formed from the reaction between sunlight and nitrogen oxides, as well as nitrogen dioxide 

(NO2), an important fraction of PM2.5 and the main source of nitrate aerosols (WHO, 2022).

While the toxic neurological effects of ambient air pollution may impact individuals at all 

ages (Livingston et al. 2020; Russ, Reis, and van Tongeren 2019; Jayaraj et al. 2017), 
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children are thought to be particularly vulnerable given their higher respiratory rates 

compared to adults (Buka, Koranteng, and Osornio-Vargas 2006) and the rapid and dynamic 

neural change that occurs during childhood (Sunyer 2008). Furthermore, the transition from 

childhood to adolescence represents a sensitive period of neurodevelopment, suggesting that 

exposures at this time may have an impact on long-term cognitive and emotional functioning 

(Kessler et al., 2005; Paus et al., 2008; Casey et al., 2008). Using magnetic resonance 

imaging (MRI), evidence suggests a number of neurodevelopmental consequences of 

outdoor air pollution exposure, including aberrations in gray and white matter volumes 

and microstructure, cortical thickness, and brain function (for review, see Herting et al. 

2019; Peterson et al. 2015; Pujol, Martínez-Vilavella, et al. 2016; Pujol, Fenoll, et al. 2016; 

Mortamais et al. 2017; Guxens et al. 2018; Alemany et al. 2018; Cserbik et al. 2020; 

Lubczyńska et al. 2020; 2021; Burnor et al. 2021; Pérez-Crespo et al. 2022; Peterson et al. 

2022; Sukumaran et al. 2023). Although initial MRI studies focused on prenatal exposure, 

emerging research suggests exposure to ambient PM2.5 and its constituents during childhood 

is also associated with differences in cortical thickness and subcortical volumes (Mortamais 

et al. 2017; Alemany et al. 2018; Cserbik et al. 2020; Lubczyńska et al. 2021) as well 

as altered white matter microstructural integrity (Lubczyńska et al. 2020; Burnor et al. 

2021) and subcortical gray matter microarchitecture (Sukumaran et al. 2023). Potential 

mechanisms through which air pollution can cause neurotoxicity include systemic and 

neuro-inflammation, induced oxidative stress and the resulting increase in free radicals, 

as well as damage to neurovascular units, endothelial cells, and all tissue barriers in the 

body, including nasal, lung, gastrointestinal, and blood–brain barriers (for reviews, see 

Calderón-Garcidueñas et al. 2016 & You, Ho, and Chang 2022). However, the impact of air 

pollution exposure on functional brain network maturation during this critical period of early 

adolescence is not well understood.

One in vivo method that can be leveraged for studying air pollution and functional 

brain maturation is resting-state functional magnetic resonance imaging (rs-fMRI), which 

quantifies the temporal correlation of activity across different brain regions at rest, revealing 

robust large-scale resting-state functional networks (Beckmann et al. 2005; Yeo et al. 2011). 

These core brain networks continue to mature across childhood and adolescence (Grayson 

and Fair 2017), including the frontoparietal network (FPN), the default mode network 

(DMN), and the salience network (SN), which are involved in emotional regulation, acute 

stress response, and executive function (Seeley et al. 2007; Hamilton et al. 2011; Hermans 

et al. 2014). Specifically, these three networks are part of the triple-network model, with 

each network working in tandem to successfully produce a variety of cognitive tasks 

(Seeley et al. 2007; Sridharan, Levitin, and Menon 2008; V. Menon and Uddin 2010). 

The FPN is anatomically anchored in the dorsolateral prefrontal cortex (dlPFC) and the 

posterior parietal cortex (PPC) and is functionally described as a task-positive network 

involved in executive functions like attention, problem solving, and working memory 

(Marek and Dosenbach 2018). The DMN is anatomically anchored in the medial prefrontal 

cortex (mPFC), posterior cingulate cortex (PCC), precuneus, and the angular gyrus and 

is functionally described as a task-negative network that is active in passive rest, mind-

wandering, and day-dreaming (Raichle 2015). The SN is anatomically anchored in the 

insula and dorsal anterior cingulate cortex (dACC) and is theorized to mediate the switch 
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between the FPN and DMN in response to salient stimuli (Seeley et al. 2007; Goulden et 

al. 2014). As Menon (2019) eloquently states, together these three networks consolidate past 

and present sensory, affective, and cognitive inputs (SN), integrate this information into an 

individualized narrative (DMN), and respond accordingly by executing emotional reactions 

and/or planned, goal-directed activities (FPN). These networks form the basis for a range 

of important cognitive and emotional functions integral to everyday life, with dysfunction 

of this triple network likely to contribute to an array of complex brain disorders, including 

psychopathologies that commonly emerge during adolescence.

Patterns of integration and segregation within and between intrinsic brain networks tend to 

mirror functional developmental milestones. For example, sensorimotor and visual networks 

reach maturation by early childhood, whereas networks involved in higher order cognitive 

and emotional functions (i.e., FPN, SN, DMN) experience dynamic restructuring in later 

childhood and into adulthood (Kiviniemi et al. 2000; Redcay, Kennedy, and Courchesne 

2007; Lin et al. 2008; Xiao et al. 2016; Grayson and Fair 2017). In addition to network 

maturation, subcortical regions like the hippocampus and amygdala experience a period 

of significant plasticity during childhood and adolescence (Curlik, Difeo, and Shors 2014; 

DiFeo and Shors 2017; for reviews, see Scherf, Smyth, and Delgado 2013 & Tottenham 

and Galván 2016). Children exhibit increased subcortical-cortical connectivity compared to 

young adults, where there is more prominence among cortical connections (Grayson and 

Fair 2017). This neural maturation and increased subcortical-cortical connectivity is likely 

important for the development of executive functions, memory, and emotional regulation, 

and is thought to represent a period of particular vulnerability to insult from a myriad 

of exposures, including neurotoxicants like air pollution (Hedges et al. 2019). However, 

despite several existing studies on the topic, questions remain about the exact developmental 

profiles of intrinsic brain networks given inconsistencies in the literature. For example, while 

the intrinsic functional network hierarchy is largely in place as early as 1 year of age, 

important networks undergo differential patterns of between- and within-network integration 

and segregation (Gilmore, Santelli, and Gao 2018). In normative healthy neurodevelopment 

there is evidence that both the FPN and DMN have well-connected local (e.g., brain regions 

close together) within-network patterns early in development, with longer-range connections 

between more distal brain regions continuing to develop in late childhood (Long et al. 

2017). In contrast, longitudinal reductions are seen in within-network SN connectivity 

during adolescence (Teeuw et al. 2019). Results from a more recent cross-sectional study by 

Sanders et al. (2023) further supports the tenet that age-related increases in within-network 

connectivity occur in DMN and FPN but decreases occur in within-network connectivity in 

the SN during childhood and into early adolescence. As for between-network connectivity, 

current evidence points to segregation for all canonical networks, namely those within the 

triple network model (FPN, SN, DMN) (DeSerisy et al. 2021; Thomson et al. 2022). For 

example, a recent study by DeSerisy et al. (2021) found connectivity between DMN and 

FPN brain regions were increasingly anticorrelated in older participants (age range: 7–25 

years), suggesting between-network segregation in these networks. Additionally, Thomson 

et al. (2022) found decreased SN-FPN and SN-DMN network connectivity in children. As 

such, a tenet in the existing literature is that by adulthood brain regions within-network show 

stronger correlations with each other, whereas brain regions that are from different networks 
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show weaker correlations, respectively. However, it is important to note that not all studies 

find the same degree of large-scale network reorganization across development (Sylvester 

et al. 2018) and accelerated cohort studies suggest that the transition from childhood to 

adolescence may in fact be a sensitive period hallmarked by greater, and possibly more 

dynamic, changes in functional connectivity (FC). For example, in a cross-sectional study 

conducted by Marek et al. (2015), both within- and between-network connectivity was lower 

during childhood to early adolescence (10–15 years of age); later in development, between-

network integration was higher in young adulthood. The authors posit that the observed 

between-network increases may explain increased ability for cognitive control during 

the transition to young adulthood. However, Sanders et al. (2023) found no significant 

age-related differences in between-network dynamics involving our three networks of 

interest (i.e., SN-DMN, SN-FPN, or FPN-DMN). Discrepancies among the literature 

could likely be attributed to methodological differences, such as study design (cross-

sectional vs longitudinal), analysis (i.e., pairwise correlations, graph theory, independent 

component analysis), scanner hardware and software differences, and differences in how 

head motion was handled. Thus, although patterns exist in children versus adults, few 

studies have examined longitudinal changes in these networks during the transition to early 

adolescence, highlighting the need for additional longitudinal neuroimaging studies aimed 

at characterizing intrinsic functional network connectivity (Stevens 2016; Grayson and Fair 

2017; Thomson et al. 2022; Cao et al. 2016; Ernst et al. 2015, Supekar, Musen, and Menon 

2009; Qin et al. 2012) as well as examining to what degree these patterns may be altered by 

outdoor air quality.

To date, only three studies have described cross-sectional associations between exposure 

to air pollution and functional brain network connectivity (Pujol, Martínez-Vilavella, et al. 

2016; Pujol, Fenoll, et al. 2016; Pérez-Crespo et al. 2022) and no studies have examined 

whether air pollution exposures affect longitudinal changes in FC development over time. 

In a sample of 236 children aged 8–12 years old from Barcelona, Spain, Pujol, Martínez-

Vilavella, et al. (2016) found that air pollution exposure during childhood in the form of a 

combined estimate of NO2 and elemental carbon was significantly associated with decreased 

intra-DMN FC, indicative of lower within-network integration in the DMN. FC between 

the medial frontal cortex and the frontal operculum at the lateral boundary of the DMN 

was higher in more exposed children, suggestive of lower between-network segregation. A 

second study from the same group found that exposure to airborne copper, as measured 

via PM2.5, was related to decreased FC between the caudate and frontal lobe operculum 

in children aged 8–12 years (Pujol, Fenoll, et al. 2016). More recently, Pérez-Crespo et al. 

(2022) utilized a large longitudinal cohort of children (N = 2,197) from the Generation 

R Study to investigate the association between air pollution exposure during discrete 

developmental windows (i.e., pregnancy, birth to 3 years, 3 to 6 years, and 6 to 12 years 

of age) on network FC at age 12 years old. Higher levels of NO2, nitrogen oxides (NOx, 

and PM2.5 absorbance (a proxy for black carbon – also known as “soot”, a major component 

of PM (Cyrys et al. 2003)) were found to be related to greater between-network FC, albeit 

the associations between the exposure and the outcome varied for each pollutant depending 

on the timing of exposure. Specifically, PM2.5 absorbance had the most associations with 

brain network FC, demonstrating that higher exposure was associated with higher within- 
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and between-network measures of FC and thus, higher within-network integration and lower 

between-network segregation. NO2 and NOx exposure demonstrated similar relationships 

- higher NO2 and NOx exposure and higher between-network FC (i.e., decreased between-

network segregation) was observed. These studies found that pollutants interfered with 

expected between-network segregation but results regarding effects on within-network 

integration were mixed. While these three cross-sectional analyses of Western European 

children represent important advances in the investigation of ambient air pollution exposure 

and functional network outcomes during childhood and adolescence, additional large-scale 

and longitudinal studies from diverse geographical regions are needed.

The current exploratory longitudinal study aimed to understand how exposure to ambient air 

pollutants, including PM2.5, O3, and NO2, at ages 9–10 years are associated with changes 

in FC over a 2-year follow-up period from late childhood into early adolescence using 

data from the longitudinal Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® 

cohort. By utilizing ABCD’s geographically diverse and large sample size, we are more 

likely to detect nuanced effects of air pollution xposure on pediatric brain maturation across 

the United States. We chose to focus on the potential effects of air pollution on the FC 

of the FPN, DMN, and SN, as well as subcortical regions of interest (ROI) due to their 

aforementioned development during this time period and their potential relative importance 

for emotional regulation and executive functioning. Considering most of the literature 

on resting-state brain maturation is based on cross-sectional studies, we first examined 

developmental changes in FC patterns over the 2-year period (in absence of any pollutant) 

to aid in the interpretation of our findings. We hypothesized that higher levels of outdoor 

air pollution exposure during late childhood would associate with altered FC development in 

the networks of interest over time.

2. Methods

2.1. Study population

The ABCD Study® is the largest long-term study of adolescent brain development from 

21 communities throughout the United States, with 11,867 9–10-year-old children enrolled 

between years 2016 and 2018; these children are followed annually for over ten years 

with up to two brain imaging timepoints currently available (Volkow et al. 2018). ABCD 

Study inclusion criteria included age (≤10.99 years old at initial visit) and English 

language proficiency, whereas exclusion criteria included major medical or neurological 

conditions, history of traumatic brain injury, diagnosis of schizophrenia, moderate/severe 

autism spectrum disorder, intellectual disability, alcohol/substance use disorder, premature 

birth (gestational age <28 weeks), low birthweight (<1200 g), and contraindications to MRI 

scanning; detailed recruitment procedures can be found in Garavan et al. 2018. ABCD’s 

study procedures are approved under a centralized institutional review board from the 

University of California, San Diego; each study site also obtained approval from their own 

institutional review boards. All parents or caregivers provided written informed consent; 

children provided written assent.

For the current analyses, data were obtained from the ABCD’s 4.0 Data Release and 

included 9497 subjects across 21 sites with air pollution exposure estimates from baseline 
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and good quality scans from baseline and/or year-two follow-up visit dates (9/2016 – 

2/2020) (see below for quality control details). One subject from each family was randomly 

selected to reduce the number of hierarchical levels from three (subject, family, site) to 

two (subject, site), in that the number of both siblings and twins vary by site as part of 

the planned study design. Participants were 9–10 years old during the baseline assessment 

and 11–13 years old at the follow-up assessment approximately two years later. Of the 

total 9497 participants, 4327 (45.6%) had two time points of good quality imaging data, 

and the remainder (N = 5170, 54.4%) had one time point of good quality imaging data, 

either from the baseline or year-two follow-up visit (see additional details below and Table 

1). Moreover, the final sample used here represents children with complete exposure and 

imaging data collected before March 1, 2020 to remove any potential confounding effects of 

stress inherent to the COVID-19 pandemic.

2.2. Ambient air pollution estimates

Annual ambient air pollution concentration for PM2.5, O3, and NO2 were assigned to 

primary residential addresses of each child as described in detail in Fan et al. (2021). Briefly, 

daily estimates of PM2.5 and NO2 as well as daily 8-hour maximums of ground-level O3 

were derived at a 1-km2 resolution across the United States using hybrid spatiotemporal 

models, which utilize satellite-based aerosol optical depth models, land-use regression, 

meteorological data, and chemical transport models (Di et al. 2019; 2020; Requia et al. 

2020). These daily estimates were averaged over the 2016 calendar year, corresponding to 

onset of ABCD Study enrollment. These concentrations were then assigned to the primary 

residential address at the baseline study visit when children were aged 9–10 years. The 

cross-validation of these models with EPA-monitored levels across the country were as 

follows: R2 Root Mean Square Error (RMSE) of 0.89 for PM2.5 annual averages (Di et al., 

2019); 0.84 for NO2 annual averages (Di et al., 2020); 0.90 for daily 8-hour maximum O3 

(Requia et al., 2020). PM2.5 was reported in μg/m3 and O3 and NO2 were originally reported 

in parts per billion (ppb). Prior to analysis, O3 and NO2 were converted from ppb to μg/m3 

(O3: 1 ppb = 1.97 μg/m3; NO2: 1 ppb = 1.88 μg/m3).

2.3. Imaging

2.3.1. Image acquisition and Processing: rs-fMRI—Each scan was collected in 

accordance with harmonized procedures on Siemens Prisma, Philips, or GE 750 3T MRI 

scanners. Imaging acquisition protocols specific to ABCD have been described by Casey et 

al. (2018). Twenty cumulative minutes of resting-state data was collected across two sets of 

two five-minute acquisition periods, while subjects were instructed to keep their eyes open 

and fixed on a crosshair. This increased the probability of collecting enough data with low 

motion per ABCD’s standards (>12.5 min of data with framewise displacement (FD) < 0.2 

mm) (Power et al. 2014). Resting-state scans were acquired using an echo-planar imaging 

sequence in the axial plane, with the following parameters: TR = 800 ms, TE = 30 ms, flip 

angle = 90°, voxel size = 2.4 mm3, 60 slices. Only images without clinically significant 

incidental findings (mrif_score = 1 or 2) that passed all ABCD quality-control parameters 

(imgincl_rsfmri_include = 1) were included in analysis. Image processing steps have been 

previously described by Hagler et al. (2019).
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2.3.2. Gordon parcellation and functional connectivity analysis—Networks 

of interest included the SN, FPN, and DMN; subcortical ROIs included right and left 

amygdalae and hippocampi. Networks were functionally defined using resting-state FC 

patterns according to methods described by Gordon et al. (2016). Intra-network correlations 

were calculated by averaging the pairwise correlations for ROIs belonging to that network; 

inter-network correlations were calculated by averaging the pairwise correlations between 

ROIs within the first network and ROIs within the second network; subcortical-network 

correlations were calculated by averaging the pairwise correlations between ROIs within a 

network and a given subcortical ROI (Gordon et al. 2016).

2.4. Covariates

Covariates included demographic and socioeconomic variables, including race/ethnicity 

(White, Black, Hispanic, Asian, or Other), average household income in USD (≥100 K, 
≥50<100 K, <50 K, or Don‘t Know/Refuse to Answer), and highest household education 

(Post-Graduate, Bachelor, Some College, High School Diploma/GED, or < High School 
Diploma), since pollution levels are higher in minority communities and those from 

disadvantaged social status backgrounds (Hajat, Hsia, and O’Neill 2015). We also included 

precision variables related to both the child and MRI collection, including the child’s 

sex at birth (male or female) and handedness (right, left, or mixed), as well as scanner 

manufacturer (Siemens, Philips, GE) to account for differences in both scanner hardware 

and software, and average framewise displacement (mm) due to fMRI’s sensitivity to head 

motion (Ciric et al. 2018).

2.5. Statistical model building approach

Given that linear mixed-effects (LME) modeling can handle correlated data (i.e., hierarchical 

structure of subjects within study sites and longitudinal data), as well as handle missing 

data, it has been widely used in the MRI literature to model neurodevelopmental trajectories 

using all available data (Mills et al. 2016; Tamnes et al. 2017; Herting et al. 2018). LME 

models were used to examine developmental changes in FC patterns as well as the effects of 

exposure to PM2.5, O3, and NO2 on these changes in FC over time. In each model, subjects 

(i.e., individuals) were nested within ABCD sites, and modeled as random effects. Age was 

z-scored using the scale() function in base R (R Core Team, 2020), resulting in a z-score of 0 

equivalent to 10.69 years. Given the ability of LME models to handle a differing number of 

time points per subject data (Mills et al. 2016; Tamnes et al. 2017; Herting et al. 2018), all 

9497 subjects with a total of 13,824 scans were included in the following analyses, without 

data imputation. All analyses were conducted using the R statistical software including the 

lmerTest::lmer() package in R (Version 4.1.2.) for LME models (Kuznetsova, Brockhoff, and 

Christensen 2017).

2.5.1. Developmental models—To put the putative air pollution exposure effects in 

the context of normal development, we first examined longitudinal changes in FC in a 

model that included age (in months) as the time variable as well as all covariates previously 

mentioned.
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2.5.2. Single pollutant models—Single pollutant models included one pollutant 

(PM2.5, O3, or NO2) used as a continuous variable, age in months also used as a continuous 

variable, sex used as a binary variable (male or female), a three-way interaction term of 

age-by-sex-by-pollutant to allow testing for the impact of pollutants on changes over time 

as well as sex as a potential moderator of how each pollutant affects brain networks over 

time – previous research demonstrated both sex and age associations with brain network 

maturation (Satterthwaite et al. 2015; Schulz and Sisk 2016; Grayson and Fair 2017; Sanders 

et al. 2023) – plus all covariates previously mentioned. Nonsignificant interaction terms 

were then removed to achieve a more parsimonious model. Terms of interest in the final 

single-pollutant models included the fixed effects of age, pollutant, and the age-by-pollutant 

interaction term, respectively.

2.5.3. Multi-pollutant models—Finally, we built a multi-pollutant model to help 

address confounding effects of co-exposure to multiple pollutants on our outcomes which 

included age-by-PM2.5, age-by-O3, and age-by-NO2 interaction terms, the main effects of 

each pollutant (PM2.5, O3, and NO2) and age, and all previously mentioned covariates.

2.5.4. Sensitivity analyses—Due to the potential seasonality of pollutant 

concentrations, we performed an additional sensitivity analysis including meteorological 

season of the MRI scan as an additional time-varying covariate for each multi-pollutant 

model. Additionally, we performed a sensitivity analysis to examine effects in the subset of 

participants that had both waves of MRI data (N = 4327).

2.5.5. Correction for multiple comparisons—Given we conducted models for 

multiple brain outcomes, including 3 intra-network outcomes (SN, DMN, FPN), 3 inter-

network outcomes (SN-DMN, SN-FPN, DMN-FPN), 6 amygdala (right and left) to network 

(SN, DMN, FPN) outcomes, and 6 hippocampus (right and left) to network (SN, DMN, 

FPN) outcomes, we corrected for multiple comparisons using false discovery rate (FDR) 

correction for the coefficients of interest across the 18 tests. We also denote in our tables 

which findings pass a more stringent Bonferroni-correction (i.e., 90 tests (18 tests * 5 

models); p = 0.0005).

3. Results

Participant demographic and socioeconomic characteristics for the final study sample can be 

found in Table 1 and Supplemental Table 1. Data from 9497 participants with 1–2 waves 

of neuroimaging data were included in the final analyses. Excluding age at visit, subjects 

scanned at the baseline visit and the year-2 follow-up visit did not differ significantly 

on socioeconomic, demographic, or MRI variables. The discrepancy in N at the baseline 

visit compared to the year-2 follow-up visit can partially be explained by the onset of the 

COVID-19 pandemic, which interrupted data collection, and our decision to exclude scans 

collected after March 2020. The mean (SD) annual pollutant concentrations across all sites 

are as follows: PM2.5: 7.65 (1.53) μg/m3 (range, 1.72–15.9 μg/m3); O3: 81.2 (8.67) μg/m3 

(range, 58.5 – 111 μg/m3); and NO2: 35.1 (10.9) μg/m3 (range, 1.16–69.7 μg/m3). PM2.5 

and O3 were weakly negatively correlated (r = −0.17) and PM2.5 and NO2 were weakly 
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positively correlated (r = 0.18); there was no correlation between O3 and NO2 (r = 0.003) 

(Supplemental Fig. 1).

Below we outline the results from the developmental models (Table 2) as well as the 

multi-pollutant models (Tables 3–4 and Figs. 1–2). Notably there were no significant age-

by-sex-by-pollutant or sex-by-pollutant interactions across the initial single-pollutant models 

(see Supplemental Tables 2–4). Results of both sets of single-pollutant models were nearly 

identical to the multi-pollutant models and are therefore not discussed; however, results for 

the single pollutant models can be found in Supplemental Tables 2–7.

3.1. Intra-network cortical functional connectivity

In developmental models, intra-SN FC decreased, whereas intra-DMN and intra-FPN FC 

increased over the 2-year follow-up period from age 9 - 13 (Table 2, Fig. 1a).

In fully adjusted multi-pollutant models, there was a significant age-by-O3 interaction, 

demonstrating that with higher O3 concentrations, greater intra-DMN integration was seen 

over the two-year follow up period from age 9 - 13 (Table 3, Fig. 1b). There were no 

significant age-by-PM2.5 or age-by-NO2 interactions on intra-network FC over the 2-year 

follow-up period. There was a main effect of NO2 on intra-FPN connectivity, such that 

higher NO2 concentrations were related to less intra-FPN FC at age 9 (Table 3).

3.2. Inter-network cortical functional connectivity

In developmental models, SN-FPN FC increased with age over time, demonstrating inter-

network integration. There were no significant changes in SN-DMN or FPN-DMN FC over 

the 2-year follow-up period from age 9 - 13 (Table 2, Fig. 1a).

In fully adjusted multi-pollutant models, there were significant age-by-pollutant interactions 

for PM2.5 and NO2 (Table 3, Fig. 1b). Specifically, with higher PM2.5 concentrations, 

increases in SN-DMN and FPN-DMN inter-network FC were seen over the 2-year follow-up 

period from age 9 - 13 (Table 3, Fig. 1b). In contrast, higher NO2 exposure was associated 

with decreasing SN-FPN and FPN-DMN inter-network FC over the 2-year follow-up period 

from age 9 - 13 (Table 3, Fig. 1b). There were no significant main effects or interactions of 

O3 on inter-network FC.

3.3. Subcortical-network functional connectivity

3.3.1. Amygdala—In developmental models, right amygdala-FPN and bilateral 

amygdala-SN FC decreased with age over time, demonstrating amygdalae-to-network 

segregation (Table 2, Fig. 2a). There were no significant changes in amygdala-DMN FC 

over the 2-year follow-up period from age 9 - 13 (Table 2).

In fully adjusted multi-pollutant models, there were several significant age-by-pollutant 

interactions (Table 4, Fig. 2b). Higher PM2.5 concentrations were associated with decreasing 

left amygdala-DMN and right amygdala-FPN FC, but increasing left amygdala-FPN and 

bilateral amygdala-SN FC over time from age 9 - 13. On the other hand, higher O3 

levels were related to decreasing right amygdala-DMN FC, whereas higher O3 and NO2 

levels were associated with decreasing left amygdala-FPN FC over the 2-year follow-up 
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period from age 9 - 13. No significant main effects of pollutants were seen for amygdala-to-

network FC (Table 4).

3.3.2. Hippocampus—In developmental models, FC decreased between the bilateral 

hippocampus-DMN, -FPN, and -SN over time, demonstrating hippocampal-to-network 

segregation from age 9 - 13 (Table 2, Fig. 2a).

In fully adjusted multi-pollutant models, higher PM2.5 concentrations were related to 

increasing left hippocampus-DMN, bilateral hippocampal-SN, and bilateral hippocampal-

FPN FC over the 2-year follow-up period from age 9 - 13 (Table 4, Fig. 2b). Higher O3 

concentrations were associated with decreasing left hippocampus-DMN, right hippocampus-

FPN, and left hippocampus-SN FC over time (Table 4, Fig. 2b). Lastly, higher NO2 levels 

were associated with decreasing bilateral hippocampal-FPN and left hippocampus-SN FC 

over the follow-up period from age 9 - 13 (Table 4, Fig. 2b). No significant main effects of 

pollutants were detected in hippocampal-to-network FC (Table 4).

3.4. Sensitivity analyses

In models including the season in which the MRI was collected, the previously noted 

findings all remained significant (Supplemental Table 8). Similarly, magnitude and direction 

of effects (standardized ß’s) were nearly identical in the subset of participants with both 

waves of MRI data as compared to the full analytic sample that included all individuals with 

one or two waves of MRI data (Supplemental Table 9).

4. Discussion

In this study, we leveraged longitudinal LME modeling and resting-state fMRI data to 

assess how one year of exposure to PM2.5, O3, and NO2 during childhood changes large-

scaled cortical network and subcortical-to-cortical FC over a 2-year follow-up period. 

PM2.5 was found to relate to a greater number of changes in FC (i.e., 2 inter-network 

and 10 subcortical-to-cortical changes) over the transition from late childhood into early 

adolescence as compared to O3 (i.e., 1 intra-network and 5 subcortical-to-cortical changes) 

and NO2 (i.e., 2 inter-network and 4 subcortical-to-cortical changes). The current findings 

of differential FC development in children exposed to higher levels of air pollution expand 

upon the previous cross-sectional studies to show that ambient air pollution exposure during 

late childhood contributes to differential, within-subject changes in FC development as 

measured over a 2-year period.

4.1. Longitudinal trajectories of intrinsic functional network development

In terms of large-scaled network dynamics, previous literature, largely focused on 

comparing children versus adults, suggests that individual networks segregate from each 

other, while also displaying increased connectivity within each network (i.e., integration) to 

increase efficiency across childhood and adolescence (Grayson and Fair 2017). However, 

Marek et al. (2015) found that both within- and between-network FC decreases in early 

adolescence (ages 10–15 years), followed by between-network integration increasing later 

as individuals transition into adulthood. Sanders et al. (2023), however, found linear and 
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non-linear age-related differences in both intra- and inter-network connectivity in a cross-

sectional analysis using child and adolescent data from the Human Connectome Project 

(HCP). Given that most of the developmental resting-state FC studies to date have been 

limited by cross-sectional study design, small N, and/or inclusion of a wide age-range 

(for review, see Stevens 2016), we first sought to characterize age-related intra-, inter-, 

and subcortical-to-network FC trajectories within the large longitudinal ABCD sample. We 

found increasing intra-network integration for both the FPN and DMN from ages 9–13 

years-old, which suggests increased communication or connectivity between regions in the 

same network. This finding is consistent with previous literature demonstrating increased 

intra-network integration with age in developmental cohorts, even those with wider age 

ranges. However, we also observed decreased intra-network connectivity in the SN as well 

as increased inter-network connectivity between the SN-FPN, at odds with most of the 

literature to date but more consistent with the findings of Sanders et al. (2023) and Teeuw 

and colleagues (2019) as it relates to intra-network dynamics, as well as Marek et al. 

(2015) to an extent. We also did not find age-related changes in inter-network connectivity 

between the FPN-DMN or SN-DMN. Thus, longitudinal changes seen between the narrow 

developmental window of ages 9–13 years within our sample are incongruent with the 

simplistic theory of intra-network integration and inter-network segregation throughout 

development which has largely been based on group differences between children and adults 

(Supekar, Musen, and Menon 2009; Qin et al. 2012; DeSerisy et al. 2021; Stevens 2016). 

Our findings highlight more nuanced patterns of large-scaled FC development during the 

transition from childhood to adolescence.

Beyond cortical FC, we also found distinct segregation patterns between subcortical-to-

cortical FC over the 2-year follow-up period. The amygdala was found to segregate from 

SN and FPN, whereas the hippocampus segregated from all three networks of interest. The 

current findings are inconsistent with others that have reported the PFC and hippocampus 

integrate over the course of development from ages 8 to 32 years (Calabro et al. 2020). 

Inconsistencies in the literature could be due to issues with head motion resulting in 

spurious results or subcortical signal dropout, both common issues in rs-fMRI methodology 

(Boubela et al. 2015; Grayson and Fair 2017). Additionally, these other studies have 

focused on smaller and more homogenous samples or used different study designs (i.e., 

cohort-sequential or cross-sectional).

Taken together, our findings in a large and diverse sample point to dynamic changes 

to SN connectivity, namely intra-SN segregation and SN-FPN integration; intra-network 

integration in FPN and DMN; and subcortical-to-cortical network segregation broadly 

from ages 9 to 13 years of age. These findings support previous studies suggesting that 

the transition from childhood into early adolescence may be a time characterized by 

more dynamic change in network FC, within the overall intra-network integration and 

inter-network segregation noted to occur by adulthood (Heyn et al. 2019; Jalbrzikowski et al. 

2017; Peters et al. 2017; Wendelken et al. 2017).
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4.2. Distinct changes in functional network organization during the transition to 
adolescence by pollutant type

Building from these developmental changes in FC, our results suggest that outdoor air 

pollution exposure is associated with distinct differences in functional organization during 

the transition from childhood to early adolescence depending on the pollutant type. For 

instance, PM2.5 had opposite effects as compared to O3 and NO2 on inter-network and 

subcortical-to-network changes over time. Importantly, we implemented a multi-level model 

analytic framework which accounted for study site differences, controlled for potential 

seasonality in sensitivity analyses, and examined both single and multi-pollutant models to 

try to disentangle these complex multiple exposure challenges. Thus, while the opposing 

effects of PM2.5 compared to O3 and NO2 may initially seem counterintuitive, it is feasible 

that these differences may reflect varying underlying mechanisms and/or be the result of 

compensatory restructuring of crosstalk between brain regions resulting from exposure. 

Moreover, our findings also suggest patterns of change for large-scaled networks during 

the transition from childhood to early adolescence may be exaggerated or diminished 

depending on the type of pollutant. For example, higher O3 exposure was related to 

greater increases in intra-network FC above increases seen with age alone, suggestive of 

exaggerated connectivity in this network over time. In contrast, higher PM2.5 exposure 

was linked to greater integration between cortical networks and subcortical regions, which 

may reflect impairments in the otherwise expected subcortical-to-network segregation 

seen in our sample during this developmental stage. This disruption of developmental 

change in functional network organization from ambient air pollution may have important 

implications, as an optimal balance in the synchrony within the triple network model is vital 

for various cognitive and emotional processes (for reviews, see Menon 2011; van Oort et 

al. 2017), with potential consequences related to the emergence of psychopathologies (for 

review, see Menon 2019). Therefore, additional research is warranted to determine whether 

these notable exposure-related changes in the functional balance of intrinsic brain networks 

during the transition to early adolescence may subsequently contribute to various mental 

health disorders that typically emerge during mid- to late adolescence (Kessler et al. 2005).

4.3. Potential effects of pollutant composition, dose, and timing of exposure

Similarities and differences between the current study and the three previous studies also 

suggest that examining the chemical composition, dose of pollutant, and timing of exposure 

are likely important to consider in future research. PM2.5 effects on FC development were 

most prominent in the current study, yet Pérez-Crespo et al. (2022) did not find any 

associations between PM2.5 exposure and functional brain connectivity outcomes in their 

study sample. Pérez-Crespo et al. (2022) also found that higher NO2 exposure from birth to 

age 3 was linked to lower between-network segregation at age 12 years, whereas we found 

higher NO2 exposure at ages 9–10 years was related to greater between-network segregation 

over time, up to age 13 years. It is possible that chemical composition or source differences 

in exposures as well as differential doses of exposure between the studies may account for 

such discrepancies. For example, PM2.5 is known to carry heavy metals as well as include 

sulfate, nitrate, ammonium, black and organic carbon, and other materials, with composition 

varying regionally (Hyslop 2009). In the Generation R project, local traffic emissions within 

Rotterdam, Netherlands were responsible for the vast majority of NO2 exposure, whereas 
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NO2 sources in the ABCD project are likely more complex and vary as a function of 

regional differences across the U.S. Moreover, we utilized a multi-pollutant approach, and 

our average levels of exposure were relatively low as compared to the other studies to date 

that have focused either on single pollutant or summary exposure estimates. Thus, it is 

possible there may be differential dose dependent effects that warrant further investigation.

Moving forward, the timing of exposure is likely a key piece in fully characterizing how air 

pollution exposure affects FC development across childhood and adolescence. Although the 

exact biological mechanisms linking ambient air quality and neurodevelopmental outcomes 

remain unclear, animal studies suggest both prenatal and childhood exposure lead to changes 

in oxidative stress, neuroinflammation, microglial activation, and neuronal structure and 

function (Morgan et al. 2011; Yan et al. 2015; Levesque et al. 2013; 2011; Li et al. 2012). 

However, the routes and degree by which prenatal and childhood exposures impact these 

processes may be distinct. Specifically, prenatal exposure to air pollution is expected to 

activate maternal immune function, leading to systemic changes in oxidative stress and 

inflammation as well as impairment of placental function and epigenetic modification 

(Johnson et al. 2021; Ha 2021). In addition to systemic inflammation and oxidative stress, 

childhood exposure may also damage the blood–brain barrier (BBB), making the brain 

more vulnerable to many exogenous toxins (Ha 2021; Kang et al. 2021; Lilian Calderón-

Garcidueúas et al. 2008). Moreover, regardless of the mechanism(s) at play, prenatal 

and childhood exposure may present unique neurodevelopmental deficits based on the 

differential timing of various neurodevelopmental processes (i.e., neurulation, proliferation, 

migration, differentiation, synaptogenesis, gliogenesis, and myelination) and known spatial 

differences in periods of plasticity across various brain regions (e.g., visual and sensory 

systems develop earlier than the prefrontal cortex) (Herting et al. 2019). Thus, it is 

reasonable to hypothesize that prenatal and childhood exposures may also have varying 

consequences on developmental trajectories of intrinsic brain network development. In this 

regard, the current findings, suggesting one-year annual average exposure during childhood 

is linked to changes in FC patterns as the brain matures into early adolescence, is congruent 

with those of Pujol et al. (2016a, 2016b). They reported similar associations as seen 

with PM2.5 in the current study – namely decreased within-network and increased between-

network FC – when the timing of child’s exposure and the brain outcomes coincide at 

ages 8–12 years old (Pujol et al., 2016a,b). In contrast, however, the associations between 

air pollution exposure and differential FC at age 12 years reported by Pérez-Crespo et 

al. (2022) were only apparent when the exposure occurred in early life (i.e., birth to age 

3 years and age 3 to 6 years), whereas no association was found between more recent 

exposures in relation to the time of the brain scanning. Interestingly, however, despite 

differences in the timing of exposure, both Pérez-Crespo et al. (2022) and the current 

study found air pollution exposure to relate more broadly to inter-network as compared to 

intra-network FC; which is also congruent with the between-network differences noted in 

both studies by Pujol et al. (2016a, 2016b). Taken together, it seems ambient air pollution 

during childhood development may directly interfere with the diverging activation and 

communication between functional networks, which is thought to be necessary to support 

increased ability of cognitive and emotional functioning (for reviews, see Menon 2011; 

van Oort et al. 2017). As such, more research is necessary to understand the nuances in 
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the relative importance of both the potential concurrent, delayed, and/or cumulative effects 

of exposure periods on intra-network brain maturation. Again, given the transition from 

childhood to adolescence may in fact be a sensitive period with dynamic changes in FC 

development (Thomson et al. 2022; Long et al. 2017; Heyn et al. 2019; Jalbrzikowski et 

al. 2017; Peters et al. 2017; Wendelken et al. 2017), it will be important for future research 

to also consider how air pollution influences the underlying developmental profile of FC 

that may exist within the age ranges studied. Hence the current study aimed to examine 

developmental patterns of change in FC, as to better understand how air pollution may 

influence developmental processes captured from ages 9–13 years. Future cross-sectional 

and longitudinal air pollution and FC studies should consider examining age, especially in 

samples with wider age ranges of children (i.e., 8–12 years), as well as how air pollution 

may interact with those age-related patterns, to more fully characterize how air quality 

may influence the potential dynamic changes that likely occur during this period of early 

adolescent neurodevelopment in addition to the amount of change in pollution over time.

4.4. Potential neurobiological mechanisms of pollutants’ effects on network connectivity

While mechanistically the neurobiology that contributes to patterns of resting-state FC 

remain unknown, experimental studies have quantified several immune- and cerebral 

vasculature-related effects of pollution exposure that may be relevant to how air pollution 

contributes to altered patterns of synchrony between large-scaled cortical networks and 

subcortical-to-cortical connectivity. For example, a study using human cerebral endothelial 

cells to create an in-vitro BBB model demonstrated that PM2.5 can cross the BBB and 

induce an upregulation of pro-inflammatory cytokines, illustrating a potential mechanism 

for neurotoxicity (Kang et al. 2021). Beyond PM2.5, O3 exposure has also been shown 

to increase the expression of pro-inflammatory cytokines near brain capillaries (Araneda 

et al. 2008). Animal studies of the effects of NO2 exposure reveal associated endothelial 

and inflammatory responses and a corresponding increased risk for ischemic stroke (Zhu 

et al. 2012) as well as weakened synaptic plasticity and increased risk for vascular 

dementia (Li and Xin 2013) in rodent stroke models. Additionally, the same group reported 

induced excitotoxicity in healthy rats (L ind Xin 2013). In terms of subcortical-to-cortical 

findings, changes in patterns of hippocampal and amygdalar connectivity development 

by ambient air pollution is supported by evidence from rodent models investigating the 

neurodevelopmental consequences of traffic-related air pollution. Patten et al. (2020) have 

shown traffic-related air pollution upregulates microglial expression in the CA1 region of 

the hippocampus, as well as impacts hippocampal neurogenesis in rodents. Additionally, 

the cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein 

and brain derived neurotrophic factor (BDNF) signaling pathway in the hippocampus has 

demonstrated vulnerability to the neurotoxic effects of PM2.5 (J. Liu et al. 2019; 2021; F. 

Liu et al. 2021). BDNF expression occurs in both the amygdala and the hippocampus, and 

is responsible for regulating synaptic plasticity, neurogenesis, proliferation, and dendritic 

spine morphology (Miranda et al. 2019). Thus, outdoor air pollution exposure may lead to 

dysregulation of various neural processes and pathways that could lead to aberrations in 

the maturation of brain networks across childhood and adolescence as captured by resting-

state FC. Future translational work is needed that integrates human and experimental MRI 
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imaging and histological approaches in animal models to clarify the mechanisms underlying 

air pollution effects on FC maturation.

4.5. Limitations, future directions, and conclusions

Limitations of our study include those inherent in rs-fMRI methodology, namely its extreme 

sensitivity to signal noise. To guard against this, we controlled for all available variables that 

could affect image quality, such as motion artifacts and incidental findings, and covaried for 

motion using framewise displacement. Another limitation is that the ABCD Study currently 

lacks air pollution exposure during the prenatal period, early life, and beyond the 9–10-year 

age period for participants, as well as more acute measures of air pollutant concentrations 

from the day of MRI scan. Recent evidence suggests acute effects of diesel exhaust exposure 

on intrinsic brain network FC (Gawryluk et al. 2023), albeit levels of exposure tested were 

very high as part of this randomized controlled cross-over design study. Nonetheless, it 

will be important for future studies to investigate potential acute versus chronic effects of 

ambient air pollution exposure on brain connectivity. In addition, the availability of up to 

only two neuroimaging time points, while a significant advance in the field and covering 

a relatively wide age range, limits the ability to fully examine the effects of air pollution 

on longitudinal brain health outcomes over a longer follow-up period, including potential 

non-linear exposure-outcome relationships that can only be accurately quantified with three 

or more time points of data per subject. Future studies are warranted in deciphering how 

lifetime pollution may impact brain development as the data becomes available in the ABCD 

Study cohort and other publicly available datasets. It will also be warranted for future studies 

to examine the effects of exposure during vulnerable windows of development, such as 

those identified by Pérez-Crespo et al. (2022), on longitudinal brain outcomes to evaluate 

the persistence of the observed altered connectivity. Lastly, this is the fourth study and the 

first longitudinal analysis to our knowledge examining effects of ambient air pollution and 

FC in childhood and adolescence, with low levels of exposures. Therefore, our findings 

warrant validation in other large, representative cohorts. Moreover, future studies should 

aim to connect cognitive and emotional functions to alterations in brain network maturation 

related to air pollution.

In conclusion, we find compelling evidence that exposure to ambient air pollution is 

associated with differences in the maturation of functional brain networks as measured by 

rs-fMRI in children as they transition into early adolescence. Of note, the level of exposures 

in the current study are well below EPA’s national standards (US EPA 2014), yet the 

current study shows even low level exposures are correlated with changes in longitudinal 

resting-state FC development in children across the U.S. Moreover, while the effect sizes 

seen are small – which could be in part because levels of exposure were low – it is also 

feasible that cumulative exposure to these low levels may have larger and/or persistent 

health effects on a population level (Funder et al., 2019). As such, our results may provide 

further support for new guidelines with more stringent recommendations, such as those 

recommended by the WHO in September 2021 (PM2.5 = 5 μg/m3; O3 = 100 μg/m3; NO2 

= 10 μg/m3) (WHO 2021). Thus, the current findings should be taken into consideration by 

regulatory bodies as they set guidelines for acceptable levels of pollutants for the general 

population to optimize public health.
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FDR False Discovery Rate

FC Functional Connectivity

FPN Frontoparietal Network

HCP Human Connectome Project

LME Linear Mixed Effects

mPFC Medial Prefrontal Cortex

NO2 Nitrogen Dioxide

O3 Ozone

PM Particulate Matter

PPC Posterior Parietal Cortex

ROI Region of Interest

rs-fMRI Resting-State Functional Magnetic Resonance Imaging

SD Standard Deviation

SN Salience Network

TE Echo Time

TR Repetition Time
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Fig. 1. 
A) Longitudinal changes seen with age from 9 to 13 years in large-scaled cortical functional 

connectivity. B) Significant associations between the age-by-pollutant interaction term and 

intra- and inter-network rs-fMRI outcomes (FDR corrected). Red lines indicate the age-by-

PM2.5 interaction term; blue lines indicate the age-by-O3 interaction term; green lines 

indicate the age-by-NO2 interaction term. Solid lines represent network integration, or 

increased functional connectivity as measured by BOLD rs-fMRI; dashed lines represent 

network segregation, or decreased functional connectivity as measured by BOLD rs-fMRI. 

For ease of interpretation, graphs depict significant interactions between pollutant and age 

per intra- and inter-network outcome for both the 0.75 quartile (dashed line) (PM2.5 = 8.68 

μg/m3; O3 = 89.26 μg/m3; NO2 = 41.91 μg/m3) and 0.25 quartile (solid lines) (PM2.5 = 6.66 

ϋg/m3; O3 = 75.14 μg/m3; NO2 = 28.14 μg/m3) of each pollutant. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 2. 
A) Longitudinal changes seen with age from 9 to 13 years in cortical-to-subcortical 

functional connectivity. B) Significant associations between the age-by-pollutant interaction 

term and subcortical-to-network rs-fMRI outcomes (FDR corrected). Red lines indicate the 

age-by-PM2.5 interaction term; blue lines indicate the age-by-O3 interaction term; green 

lines indicate the age-by-NO2 interaction term. Solid lines represent network integration, 

or increased functional connectivity as measured by BOLD rs-fMRI; dashed lines represent 

network segregation, or decreased functional connectivity as measured by BOLD rs-fMRI. 
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Graphs depict significant interactions between pollutant and age per subcortical-to-network 

outcome. For ease of interpretation, graphs depict significant interactions between pollutant 

and age per subcortical-to-network outcome for both the 0.75 quartile (dashed line) (PM2.5 = 

8.68 μg/m3; O3 = 89.26 μg/m3; NO2 = 41.91 μg/m3) and 0.25 quartile (solid lines) (PM2.5 = 

6.66 μg/m3; O3 = 75.14 μg/m3; NO2 = 28.14 μg/m3) of each pollutant. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)

Cotter et al. Page 28

Environ Int. Author manuscript; available in PMC 2023 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cotter et al. Page 29

Table 1

Cohort demographic and socioeconomic characteristics, baseline pollutant levels, and MRI information, 

including manufacturer and head motion as measured by average framewise displacement (FD).

Cohort Characteristics

N total unique subjects 9497

Baseline Year 2

N (%) subjects with one timepoint 5170 (54.4%)

N (%) subjects with one timepoint 4292 (83%) 878 (17%)

N (%) subjects with two timepoints 4327 (45.6%)

Mean Pollutant Levels in 2016, μg/m3 (SD)

PM2.5 7.65 (1.54) 7.64 (1.52)

O3 81.3 (8.72) 80.9 (8.58)

NO2 35.3 (10.9) 34.8 (10.9)

Mean Age, months (SD) 119 (7.52) 143 (7.68)

Sex, N (%) Female 4264 (49.5%) 2449 (47.1%)

Race/Ethnicity, N (%)

White 4662 (54.1%) 2957 (56.8%)

Black 1120 (13%) 592 (11.4%)

Hispanic 1752 (20.3%) 1037 (19.9%)

Asian 175 (2%) 102 (2%)

Other 910 (10.6%) 517 (9.9%)

Handedness, N (%)

Right 6943 (80.6%) 4154 (79.8%)

Left 590 (6.8%) 356 (6.8%)

Mixed 1086 (12.6%) 695 (13.4%)

Highest Household Education, N (%)

Post Graduate Degree 3068 (35.6%) 1845 (35.4%)

Bachelor 2249 (26.1%) 1401 (26.9%)

Some College 2198 (25.5%) 1348 (25.9%)

HS Diploma/GED 730 (8.5%) 401 (7.7%)

< HS Diploma 374 (4.3%) 210 (4%)

Overall Income, N (%)

≥100 K 3465 (40.2%) 2044 (39.3%)

≥50 K & <100 K 2291 (26.6%) 1471 (28.3%)

<50 K 2190 (25.4%) 1304 (25.1%)

Don’t Know or Refuse 673 (7.8%) 386 (7.4%)

MRI Characteristics

N total MRI scans 13,824

N (%) MRI scans per timepoint 8619 (62.3%) 5205 (37.7%)

MRI Manufacturer, N (%)

Siemens 5616 (65.2%) 3213 (61.7%)
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Cohort Characteristics

N total unique subjects 9497

Baseline Year 2

GE 2125 (24.7%) 1419 (27.3%)

Philips 878 (10.2%) 573 (11%)

Mean FD, mm (SD) 0.23 (0.22) 0.17 (0.16)
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Table 2

Results from developmental models examining the fixed effect of age over time, including Cohen’s f-squared, 

standardized betas, and 95% confidence intervals for each rs-fMRI outcome of interest.

Main Effect of Age (over time) f2 β CI (95%)

Intra-Network Intra-SN 7.28E-03 −0.06* −0.08, −0.05

Intra-DMN 4.81E-03 0.05* 0.03, 0.06

Intra-FPN 0.01 0.07* 0.05, 0.08

Inter-Network SN-DMN 3.12E-05 0.004 −0.01, 0.02

SN-FPN 0.01 0.08* 0.06, 0.09

FPN-DMN 2.96E-08 −0.0001 −0.02, 0.02

Subcortical to Network L amyg-DMN 3.20E-05 0.01 −0.01, 0.02

R amyg-DMN 1.77E-04 −0.01 −0.03, 0.005

L amyg-FPN 7.52E-05 −0.01 −0.02, 0.009

R amyg-FPN 6.70E-03 −0.07* −0.09, −0.06

L amyg-SN 0.01 −0.10* −0.11, −0.08

R amyg-SN 1.26E-03 −0.03* −0.05, −0.01

L hippo-DMN 7.72E-03 −0.08* −0.09, −0.06

R hippo-DMN 5.27E-03 −0.07* −0.08, −0.05

L hippo-FPN 1.27E-03 −0.03* −0.05, −0.02

R hippo-FPN 3.92E-04 −0.02 −0.03, −0.001

L hippo-SN 7.37E-04 −0.02 −0.04, −0.007

R hippo-SN 6.36E-04 −0.02 −0.04, −0.005

Significant models are bolded (FDR-p < 0.05);

*
denotes passing a more stringent Bonferroni correction (p < 0.0005).

Abbreviations: salience network (SN), default-mode network (DMN), frontoparietal network (FPN), left (L), right (R), amygdala (amyg), 
hippocampus (hippo).
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