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1.  INTRODUCTION

The main goal of parcellating functional connectomes is 
to reduce high-dimensional connectivity space into a 
mosaic of brain regions. These regions condense the 
information from thousands of elements (i.e., voxels or 

vertices) that, on average, show coherent fluctuations in 

spontaneous activity during resting-state experiments 

(Bijsterbosch et  al., 2020). Both soft-parcellation (e.g., 

independent component analysis: ICA) and hard-

parcellation (e.g., boundary mapping and clustering) 
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approaches have been established as popular methods 
for defining brain functional organization (Eickhoff et al., 
2018) recent methodological developments for nonlinear 
dimensionality reduction techniques, using diffusion map 
embedding (Coifman et al., 2005) on functional magnetic 
resonance imaging (fMRI) matrices, have allowed the 
mapping of functional connectomes to low-dimensional 
manifolds known as gradients of connectivity (Vos de 
Wael et al., 2020). This method aims to reduce the dimen-
sionality of the data, similar to parcellation approaches; 
however, such reduction does not require discrete par-
cels, which generally remove the spatial transition 
between different brain regions (Huntenburg et al., 2018). 
Thus, the individual elements of the data (i.e., voxels or 
vertices) are preserved. Despite conceptual and mathe-
matical differences between gradients and parcellations 
(Hong et al., 2020), it has been shown that the principal 
gradients of connectivity performed similarly to parcella-
tions as behavioral predictors (Kong et al., 2023). Nota-
bly, gradients of functional connectivity complement 
parcellation methods by capturing a smoother transition 
between different functional regions, offering potential 
insight into hierarchical information processing in the 
brain (Margulies et al., 2016).

In a seminal publication, Margulies et al. (2016) demon-
strated that the principal gradient of connectivity exists in 
the human brain, with unimodal primary sensorimotor 
regions situated at one end and transmodal regions 
associated with the default mode network and represen-
tative of abstract functioning at the other end. That work 
provided a foundation for understanding macroscale gra-
dients within the framework of functional hierarchies. 
Since then, gradient methods have been used to describe 
the continuous axis of functional specialization in regions 
such as the hippocampus (Vos de Wael et al., 2018) and 
insula (Royer et al., 2020; Tian & Zalesky, 2018). Gradient 
methods have also provided novel insight into disrupted 
connectivity among clinical populations (Hong et  al., 
2019), the organization of neonatal connectomes (Lariv-
ière, Vos de Wael, et  al., 2020), and the description of 
functional connectivity changes after structural alter-
ations (e.g., focal lesions) (Bayrak et al., 2019). However, 
the behavioral interpretation of macroscale gradients is 
still a central topic of discussion in the community.

Prior work has demonstrated that the functional signif-
icance of gradients may be described using meta-analytic 
functional decoding techniques (Margulies et  al., 2016; 
Paquola et  al., 2019). Using the Neurosynth database 
(Yarkoni et  al., 2011), meta-analytic decoding of a con-
nectivity gradient has previously been performed on 

connectivity gradient maps following two steps (Margulies 
et  al., 2016). First, the gradient spectrum is segmented 
into five-percentile increments (Caciagli et al., 2022; Cross 
et al., 2021; Larivière, Weng, et al., 2020; Margulies et al., 
2016; Murphy et al., 2018; Paquola et al., 2019), and the 
20 resultant maps are binarized and transformed to vol-
ume space (Margulies et al., 2016; Paquola et al., 2019). 
Second, meta-analytic decoders, trained with term-based 
(Yarkoni et al., 2011) or Latent Dirichlet allocation (LDA) 
topic-based (Poldrack, 2011) meta-analyses from large-
scale coordinate-based databases, are applied to each of 
the resultant maps. This decoding approach allows char-
acterization of the full gradient spectrum, thereby address-
ing limitations of standard meta-analytic decoding, which 
would yield associations to only the vertices located at 
the higher end and leave the lower-end vertices unex-
plained. Although this approach has been used in multiple 
studies (Margulies et al., 2016; Paquola et al., 2019), addi-
tional methodological development is necessary to evalu-
ate these procedures fully, including the segmentation 
approach and decoding strategy.

First, existing segmentation procedures are arbitrarily 
determined with equally dense intervals (i.e., five-percentile 
increments) (Caciagli et  al., 2022; Cross et  al., 2021; 
Larivière, Weng, et  al., 2020; Margulies et  al., 2016; 
Murphy et al., 2018; Paquola et al., 2019) and could be 
based on a more data-driven approach. In some cases, 
the segment’s boundary may fall in a high-density area 
(i.e., a point in the gradient space with many vertices in its 
vicinity), thus splitting a highly interconnected group of 
vertices into two different segments. As a result, vertices 
at the boundary of the gradient’s coordinate system may 
show a low confidence value. Although the vertices are 
close in gradient space to the vertices of their corre-
sponding segment (i.e., highly interconnected), they are 
as close to the neighboring vertices from the boundary of 
the subsequent segment.

Second, the existing decoding approach trans-
formed the gradient maps from the cortical surface to 
volume space, which required binarized maps, because 
surface-to-volume mapping is ill-defined for continu-
ous maps since not every MNI voxel has a correspond-
ing fsaverage vertex (Markello et al., 2022; Wu et al., 
2018). Binarization removes the continuous representa-
tion of connectivity within each segment, eliminating 
the within-segment organization, which may remove 
important information and thus distort functional 
decoding results. Therefore, a meta-analytic decoding 
method implemented in the cortical surface, the native 
space of the gradient, should overcome this limitation.
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Third, multiple different meta-analytic approaches for 
functional decoding are available as potential strategies 
for decoding connectivity gradients. Previously, gradient 
decoding has been conducted with term-based meta-
analytic maps using 24 terms from Neurosynth, covering 
a limited range of cognitive functions (Paquola et  al., 
2019). Although such maps often approximate the results 
of manual meta-analyses of the same domain and pro-
duce accurate classifications of specific stimuli, that 
approach comes with redundant and ambiguous terms 
(de la Vega et al., 2016). Given the heterogeneous termi-
nology across the literature, term-based meta-analyses 
from Neurosynth may map terms of the same construct 
(e.g., calculation, arithmetic, addition, and computation) 
to different maps (Dockès et  al., 2020); thus, decoding 
based on term-based maps may yield association to only 
a few terms of a whole construct.

Alternatively, gradient decoding has used topic-based 
meta-analytic maps generated using a Latent Dirichlet 
allocation (LDA) model of publication abstracts in Neu-
rosynth (Margulies et  al., 2016). In this case, the “v3-
topics-50” version of the database was used, including 
50 topics extracted from an LDA of Neurosynth abstracts 
as of September 2014. Standard topic approaches pro-
vide a broad collection of meta-analytic maps associ-
ated with not just one but different terms (Poldrack et al., 
2012), reducing the redundancy and ambiguity of term-
based meta-analysis (de la Vega et al., 2016). In addition, 
the topic model is likely to group similar terms under the 
same construct and thus under the same meta-analytic 
map, thus overcoming the limitation of term-based 
meta-analysis with similar terms. However, the topics 
that a standard LDA produces are not constrained by 
neural data because the model works only on the text of 
publications (Rubin et al., 2017). In addition, the spatial 
components of the maps associated with each topic 
may be widely distributed and not reflect associations 
with clearly localized brain regions. Recently, a new 
decoding framework was introduced based on the Gen-
eralized Correspondence LDA (GC-LDA), an extension 
of the LDA model (Rubin et  al., 2017). The GC-LDA 
model adds spatial and semantic constraints to the data, 
which allows the model to generate topic maps with a 
maximized correspondence between cognition and 
brain activity. However, such models have not yet been 
applied to decode functional connectivity gradients, and 
to date, no formal comparison across decoding strate-
gies has been investigated.

The overall objective of the current study was to 
investigate and improve the framework of data-driven 

methods for decoding the principal gradient of functional 
connectivity, thereby promoting best practices for under-
standing its underlying mechanisms. We comprehen-
sively examined and evaluated different methods to 
address the above limitations and establish a principled 
approach for gradient segmentation and meta-analytic 
decoding. To this end, we used the resting-state fMRI 
(rs-fMRI) group-average dense connectome from the 
Human Connectome Project (HCP) S1200 data release 
(Smith et al., 2013) to identify the principal gradient of 
functional connectivity. We evaluated three segmentation 
approaches: (i) percentile-based (PCT), (ii) segmentation 
based on a 1D k-means clustering approach (KMeans), 
and (iii) segmentation based on the Kernel Density Esti-
mation (KDE) curve of the gradient axis. We assessed six 
different decoding strategies that used two meta-analytic 
databases (i.e., Neurosynth (Yarkoni et  al., 2011) and 
NeuroQuery (Dockès et al., 2020)) and three methods to 
produce meta-analytic maps (i.e., term-based, LDA-based, 
and GC-LDA-based decoding). First, we evaluated the 
three segmentation approaches for 31 segmentation 
solutions using silhouette scores, variance ratio, and clus-
ter separation. Then, we assessed the performance of 
the 18 meta-analytic segmentation/decoding strategies 
using multiple metrics, including correlation profile (CP), 
two semantic similarity measures, and signal-to-noise 
ratio (SNR). Finally, we performed a multidimensional 
decoding for the first four gradients.

We hypothesized that a data-driven segmentation 
approach (e.g., KMeans or KDE) is preferable to a seg-
mentation based on an arbitrary percentile. In addition, 
we predicted that a continuous decoding approach 
based on a topic model (e.g., LDA or GC-LDA) would 
produce a broad set of meta-analytic maps with high 
association to each segment of the gradient, providing a 
reliable functional description and aiding overall inter-
pretability. Further, we expected that the terms provided 
by such topic-based decoders would yield a high infor-
mation content and SNR compared to other strategies. 
The current work recommends best practices and flexi-
ble methods for gradient-based functional decoding of 
fMRI data.

2.  MATERIALS AND METHODS

Our analysis plan was preregistered at https://osf​.io​
/5q29z. We conducted additional analyses during the 
review process that deviated from the original protocol, 
as suggested by the reviewers. These deviations supple-
mented and enhanced the original analysis plan but did 

https://osf.io/5q29z
https://osf.io/5q29z
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not substantially alter our initial aims and hypotheses. 
Figure  1 provides an overview of our methodological 
approach. First, we performed gradient decomposition of 
the group-average dense connectome from HCP resting-
state fMRI data. Second, we evaluated three different 
segmentation approaches to split the gradient spectrum 
into a finite number of brain maps. Third, we implemented 
six different decoding strategies, for a total of 18 decod-
ing strategies, when combined with each segmentation 
approach. Fourth, we evaluated the decoding strategies 
using multiple metrics to compare relative performance. 
Fifth, and as a final step, we proposed a method for 
decoding additional components of the gradient decom-
position. Subsequent sections describe these five steps 
in more detail.

2.1.  Analysis step 1: functional connectivity gradient

2.1.1.  Connectivity data

We used the rs-fMRI group-average dense connectome 
from the Human Connectome Project (HCP) S1200 data 
release (Smith et al., 2013; Uğurbil et al., 2013; Van Essen 
et al., 2012, 2013). The rs-fMRI experiment consisted of 
four runs of approximately 14.5 minutes (1,200 frames) 
each, for a total of 4,800 frames of resting-state data per 
participant. 1,003 subjects that completed all four rfMRI 
runs (i.e., their resting-state data comprising 4,800 
frames) were included in the analysis. Each run was pre-
processed using HCP pipelines (Fischl, 2012; Glasser 
et al., 2013; Jenkinson et al., 2002, 2012) and denoised 
using ICA-FIX (Feinberg et al., 2010; Glasser et al., 2016; 

Fig. 1.  Workflow for Evaluating Meta-Analytic Functional Decoding of the Functional Connectivity Gradient. HCP S1200 
resting-state fMRI data were used (Step 1.1) to generate functional connectivity matrices (Step 1.2) and compute the 
affinity matrix (Step 1.3). Diffusion map embedding was applied to identify the principal gradient of functional connectivity 
(Step 1.4). Whole-brain gradient maps were segmented to split the gradient spectrum into a finite number of brain maps. 
Three different segmentation approaches were evaluated: percentile-based (PCT), k-means (KMeans), and KDE (Step 
2.1). Individual segments were transformed into “activation” brain maps for decoding (Step 2.2). The three segmentation 
approaches were evaluated using the silhouette scores. Six different meta-analytic decoding strategies were implemented 
in surface space, derived from three sets of meta-analytic maps (i.e., term-based (Term), LDA, and GC-LDA) and two 
databases (i.e., Neurosynth and NeuroQuery) (Step 3.1). Results from the decoding strategies were evaluated using four 
performance metrics, assessed by comparing correlation profiles (Step 4.1), semantic similarity metrics (i.e., information 
content and TFIDF) (Step 4.2), and signal-to-noise ratio (SNR) (Step 4.3). In addition, we removed the non-functional terms 
from the model. Finally, we performed a multidimensional decoding using the first four components together (Step 5).
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Salimi-Khorshidi et al., 2014). The data were temporally 
demeaned, and its variance was normalized according  
to Beckmann & Smith (2004). The cerebral cortex 
between subjects was coregistered using the Multimodal 
Surface Matching algorithm (MSMAll). Then, group-PCA 
from the 1,003 subjects, performed by MELODIC’s Incre-
mental Group-PCA (MIGP), produced 4,500 weighted 
spatial eigenvectors. These eigenvectors were renormal-
ized, eigenvalue-reweighted, and correlated to produce 
the dense connectome (59,412 × 59,412 z-transformed 
functional connectivity matrix) (Fig. 1, Step 1.1). Further 
details on this approach can be found at www​
. h u m a n c o n n e c t o m e ​. o rg ​/ s t o r a g e ​/ a p p ​/ m e d i a​
/documentation​/s1200​/HCP1200​-DenseConnectome​
+PTN​+Appendix​-July2017​.pdf. Following Margulies et al. 
(2016), an inverse Fisher transform was applied to the 
z-transformed correlation to scale the values between -1 
and 1 (Fig. 1, Step 1.2).

2.1.2.  Gradient decomposition

Diffusion embedding (Coifman et al., 2005) was applied 
to the group-averaged connectivity matrix using the 
mapalign Python package (Langs et al., 2015), captur-
ing spatial gradients in macroscale resting-state func-
tional organization. The dimensionality reduction 
algorithm was run using diffusion maps embedding. The 
procedure is detailed in Vos de Wael et  al. (2020). It 
includes the following steps: (i) the input matrix was made 
sparse by retaining the top 10% of weighted connections 
per row, and a cosine similarity matrix was computed to 
capture similarity in connectivity matrices between verti-
ces (Fig. 1, Step 1.3); (ii) diffusion map embedding was 
applied to identify principal gradient components explain-
ing connectome variance (n_components  x  n_vertices: 
9 x 59,412); and (iii) the amount of variance explained by 
each gradient was calculated (Fig. 1, Step 1.4). We used 
the gradient (i.e., eigenvector) with the highest variance 
explained (i.e., eigenvalue), also called the principal gra-
dient, for the first part of the analysis. Additional lower-
order cortical gradients were used to perform 
multidimensional decoding in the last analysis step. In 
the first analysis steps, we focus only on the principal 
gradient because it represents an indicator of the global 
connectivity of the graph (Lioi et al., 2021) and has been 
observed to be highly consistent across resting-state 
dimensionality decomposition studies (Caciagli et  al., 
2022; Hong et al., 2019; Margulies et al., 2016; Paquola 
et al., 2019).

2.2.  Analysis step 2: segmentation and gradient maps

Once diffusion embedding was applied to decompose 
the connectivity matrix into whole-brain gradient connec-
tivity maps, the new coordinate system was examined by 
segmenting the gradient into individual maps in prepara-
tion for meta-analytic decoding. Here, we used “seg-
ment” for one-dimensional gradients and “cluster” for 
high-dimensional gradients.

Importantly, separating the gradients in sparse maps 
removes the main advantage of the gradient dimension-
ality reduction over parcellation approaches, wherein 
individual elements are preserved instead of grouping 
them in discrete parcels, thus capturing a smoother tran-
sition between different brain regions. However, in the 
context of meta-analytic decoding, analyzing sparse 
maps within the gradient axis is essential. Naturally, the 
most effective solution for decoding the principal gradi-
ent will be to characterize each element (i.e., vertex) sep-
arately or describe the axis as a single map. However, it 
is still impractical to decode brain maps at such extreme 
scales, given existing limitations of decoding algorithms, 
which are generally trained with sparse maps drawn 
from the neuroimaging literature (e.g., meta-analytic 
maps). First, finding a label associated with single verti-
ces of the cortical surface is unfeasible. A single vertex 
can be activated in almost all meta-analytic maps from 
the training sample, preventing us from finding the most 
likely labels associated with the target vertex. Second, 
considering the dense map as a single target in the exist-
ing decoding algorithm will only produce associations 
with the vertices at one end of the gradient axis, leaving 
the other vertices unexplained. The values in a gradient 
represent coordinates in connectivity space. Regions 
with similar values (e.g., 4.1 and 4.2) are closer in space 
and thus more strongly connected, while regions that are 
further apart (e.g., -3.1 and 4.2) are weakly connected 
(Kong et al., 2019).

2.2.1.  Segmentation of the cortical gradient

We evaluated three segmentation approaches: (i) 
percentile-based segmentation (PCT), (ii) segmentation 
based on a 1D k-means clustering approach (KMeans), 
and (iii) segmentation based on the Kernel Density Esti-
mation (KDE) curve of the gradient axis (Fig. 1, Step 2.1). 
For percentile-based segmentation, we applied the previ-
ously implemented method (Margulies et  al., 2016) in 
which the whole-brain gradient is segmented into per-
centile increments. Then, we applied two additional, 

http://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf
http://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf
http://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf
http://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf
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data-driven segmentation approaches to minimize the 
effect of hard, arbitrary boundaries. The second segmen-
tation approach relied on 1D k-means clustering, previ-
ously used to define clusters of functional connectivity 
matrices to establish a brain-wide parcellation (Yeo et al., 
2011). The third segmentation approach was inspired by 
methods of cytoarchitectonic border detection using the 
gray level index (Bludau et al., 2014). This method identi-
fies local minima of a Kernel Density Estimation (KDE) 
curve of the gradient axis, which are points with minimal 
numbers of vertices in their vicinity. The number of seg-
ments for the KDE method was modified by tuning the 
width parameter to generate the KDE curve.

To compare the three segmentation approaches (i.e., 
PCT, KMeans, and KDE), we estimated silhouette mea-
sures with the Python library scikit-learn (Abraham 
et al., 2014); the silhouette measure is useful for deter-
mining the confidence of each spatial location in cortical 
parcellations (i.e., “clusters”) (Yeo et al., 2011). Silhouette 
scores were used to generate confidence maps, which 
allow whole-brain visualization across different segmen-
tation approaches. Different segmentations of the princi-
pal gradient were generated for each segmentation 
approach, corresponding to numbers of segments rang-
ing from k = 2 to k = 32 for a total n = 31. Further, to deter-
mine average relative performance across segmentation 
approaches, we used three metrics that have been previ-
ously used for evaluating clustering performance in con-
nectivity matrices (Bzdok et  al., 2015; Eickhoff, Laird, 
et al., 2016; Eickhoff, Nichols, et al., 2016; Flannery et al., 
2020; Morawetz et  al., 2020). First, we determined the 
mean silhouette coefficient, computed by taking the 
average of the silhouette scores over all samples 
(Rousseeuw, 1987), the variance ratio (Calinski & Har-
abasz) score (Caliński & Harabasz, 1974), and the cluster 
separation (Davies-Bouldin) score (Davies & Bouldin, 
1979). Definitions for these metrics can be found in 
scikit-learn. The highest mean silhouette score, 
highest variance ratio, and lowest cluster separation rep-
resent the best relative performance.

2.2.2.  From gradient space to pseudo-activation maps

Following segmentation, individual segments were trans-
formed into pseudo-activation maps before meta-analytic 
decoding. In the original approach (Margulies et  al., 
2016), the gradient maps were binarized, removing the 
continuous representation of connectivity within each 
segment. Although the segments are still hierarchically 
organized, binarization eliminates the within-segment 

organization, which may remove important information 
and thus distort functional decoding results. We omitted 
the binarization step for the current study and leveraged 
the within-segment continuous axis to generate pseudo-
activation maps. We remind readers that the values of the 
gradient maps represent coordinates in the low-
dimensional manifold. Thus, to decode maps as if they 
were activation maps of continuous values, we computed 
the affinity of each element to a reference point with an 
inverse function of the distance as defined in the same 
gradient space.

First, we defined a peak activation point (or reference 
point) for each segmentation approach to minimize the 
effect of boundaries with continuous clusters. For the 
two segments located at the ends, the peak activation 
was defined on the farther boundary from the contigu-
ous segment. This criterion only applies to the 1D case, 
where the terminal segments of the principal gradient 
are clearly defined in space. Meanwhile, the peak activa-
tion for intermediate segments was defined as follows. 
For PCT, we chose the median point within subseg-
ments, while for KMeans, we selected the center of iner-
tia as provided by the k-means algorithm. In addition, we 
thought that the local maximum better represented the 
peak activation for KDE. The extreme value theorem 
guarantees the existence of a maximum between two 
minima for a continuous function in a closed interval. 
Next, the pseudo-activation values were determined by 
affinity values (A(v,p)) from all elements (v) to the peak 
activation (p) location within each segment, using a 
Gaussian (radial basis function: RBF) kernel.

	 A(v,p) = e−D
2 (v,p)/2σ2

	

The distances (D(v,p)) were calculated in the gradient 
space using the Euclidean norm. The sigma coefficient  
(σ) was defined as the average distance within the seg-
ment. The final values range between 0 and 1, where 1 
represents values closer in space or strongly connected 
to the reference point, and 0 indicates elements closer to 
the boundaries or weakly connected to the reference 
point. Figure 1, Step 2.2 illustrates how the process looks 
for 1D space (only including the principal gradient). The 
same transformation is generalizable to higher dimen-
sional clustering with k-means when other gradients 
(e.g., the second and third gradient) of connectivity are 
included in the segmentation/clustering procedure.

It is worth noting that utilizing continuous maps on 
surface space required the functional decoding approach 
to be performed in surface space. Margulies et  al.’s 
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approach did not warrant consideration of this issue 
because it made use of binary maps in place of continu-
ous maps (Margulies et al., 2016), which may be accu-
rately transformed from surface to volume space using 
the nearest vertex approach (Wu et al., 2018). However, 
surface-to-volume mapping is ill-defined for continuous 
maps because not every MNI voxel has a corresponding 
fsaverage vertex (Markello et al., 2022; Wu et al., 2018).

2.3.  Analysis step 3: meta-analytic functional decoding

Meta-analytic functional decoding provides a quantitative 
estimation of behavioral profiles associated with brain 
regions or networks (Amft et al., 2015; Bzdok, Laird, et al., 
2013; Bzdok, Langner, et  al., 2013; Cieslik et  al., 2013; 
Laird et al., 2009; Nickl-Jockschat et al., 2015; Poldrack, 
2011; Rottschy et  al., 2013; Smith et  al., 2009). This 
decoders are trained with a collections of maps generated 
by large-scale meta-analytic databases (e.g., Neurosynth 
(Yarkoni et  al., 2011) and NeuroQuery (Dockès et  al., 
2020)). Margulies and others pioneered meta-analytic 
functional decoding of the connectivity gradient in volume 
space using the Neurosynth database (Margulies et  al., 
2016). However, multiple different meta-analytic decoding 
approaches are available as potential strategies for 
decoding gradients. In the current study, we assessed six 
different decoding strategies that used two meta-analytic 
databases (i.e., Neurosynth and NeuroQuery) and three 
sets of meta-analytic maps (i.e., term-based, LDA-based, 
and GC-LDA-based decoding) (Fig. 1, Step 3.1).

2.3.1.  Meta-analytic databases

In neuroimaging, meta-analytic databases can be found 
in three different formats: (1) coordinate-based databases 
with automatically annotated studies, such as Neurosynth 
(Yarkoni et  al., 2011) and NeuroQuery (Dockès et  al., 
2020), (2) coordinate-based databases with manually 
annotated studies, such as BrainMap (Laird, Eickhoff, 
et al., 2011; Laird, Fox, et al., 2011; Laird et al., 2005), 
and (3) image-based databases such as NeuroVault 
(Gorgolewski et al., 2015).

Considering the trade-off between breadth and depth 
in the goal to develop a sufficiently large meta-analytic 
database that covers a broad range of mental functions 
(Varoquaux et  al., 2018), in this work, we used large 
coordinate-based databases whose studies were auto-
matically annotated, and provide a large set of cognitive 
states/tasks and activation coordinates. We used the 
popular Neurosynth database (Yarkoni et al., 2011), which 

contains activation coordinates automatically extracted 
from 14,371 published fMRI studies and associated  
3,228 semantic terms from the corresponding article 
abstracts. In addition, we used the recently released Neu-
roQuery database (Dockès et al., 2020), which contains 
activation coordinates that were automatically extracted 
from 13,459 published fMRI studies, as well as associated 
6,308 terms or phrases related to neuroscience extrac
ted from the articles’ abstract, body, author-provided  
keywords, and title. We downloaded the database and 
features from the Neurosynth version 7 data release 
(https://github.com/neurosynth/neurosynth-data) and the 
NeuroQuery version 1 data release (github.com/neuro-
query/neuroquery_data) using the fetch_neurosynth 
and fetch_neuroquery functions, respectively, from 
the NiMARE (Neuroimaging Meta-Analysis Research 
Environment) Python package (Salo, Yarkoni, Nichols, 
Poline, Bilgel, et al., 2022; Salo, Yarkoni, Nichols, Poline, 
Kent, et al., 2022). In both databases, each document text  
was represented with the term-frequency inverse docu-
ment frequency (TFIDF) for each term of the vocabulary  
in the entire corpus of fMRI studies. The databases  
were converted to a NiMARE object using convert_
neurosynth_to_dataset (Salo, Yarkoni, Nichols, 
Poline, Bilgel, et al., 2022). Then, we downloaded article 
abstracts from PubMed using the PubMed IDs with 
NiMARE’s function download_abstracts to create a 
corpus to train topic-based models.

2.3.2.  Meta-analytic maps

Next, six sets of meta-analytic maps with associated 
terms were generated from the Neurosynth and Neuro-
Query datasets. Meta-analytic maps are generated from 
these databases using coordinate-based meta-analysis 
(CBMA). Resultant meta-analytic maps are associated 
with a vocabulary of concepts related to cognitive states 
or tasks, which are then used for functional decoding. 
Each set of maps was generated using three different 
meta-analytic methods: term-based, LDA-based, and 
GC-LDA-based approaches. Term-based (Paquola et al., 
2019) and LDA-based maps (Margulies et al., 2016) have 
previously been used for gradient decoding, while the 
GC-LDA method (Rubin et  al., 2017) has not yet been 
applied to decode connectivity gradients.

2.3.2.1.  Term-based meta-analytic maps.  Term-based 
meta-analysis (Yarkoni et  al., 2011) uses database-
specific vocabulary terms, their frequency of occurrence 
across articles, and the activation coordinates of these 

https://github.com/neurosynth/neurosynth-data
http://www.github.com/neuroquery/neuroquery_data
http://www.github.com/neuroquery/neuroquery_data
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articles in a dataset to create meta-analytic maps. As 
mentioned above, each term in the database is repre-
sented by the TFIDF across articles, which is used to 
identify studies where the term was frequently used. To 
create the meta-analytic sample of studies for a term, we 
applied a frequency threshold of 0.001 to eliminate stud-
ies that used the term incidentally. Study-specific maps 
were generated by convolving the peak activation with a 
binary sphere of 10 mm radius centered at the voxel of 
each activation coordinate, then combining the map from 
each activation coordinate by taking the maximum value 
for each voxel. Next, meta-analytic maps were generated 
by fitting the meta estimator MKDAChi2 class from 
NiMARE’s CBMA module to the resulting modeled acti-
vation maps from the meta-analytic sample. The chi-
square estimator differs from the typical multilevel kernel 
density analysis (MKDA) (Kober et al., 2008; Wager et al., 
2007, 2009) as it uses voxel-wise chi-squared tests to 
generate statistical maps showing the dependency 
between term and activation. Finally, for each database, 
we generated one meta-analytic map for each term from 
the vocabulary of each database; that is, 3,228 meta-
analytic maps from Neurosynth and 6,145 meta-analytic 
maps from NeuroQuery.

2.3.2.2.  LDA-based meta-analytic maps.  The topic 
modeling technique, LDA, has been applied to text from 
published fMRI articles to identify latent structure and 
produce semantically coherent neuroimaging topics 
(Poldrack et al., 2012), revealing patterns consistent with 
previous meta-analyses (Poldrack et  al., 2012; Rubin 
et al., 2017). LDA-based meta-analytic maps have been 
used for the functional decoding of brain networks (de la 
Vega et al., 2016; Wang et al., 2020) and individual seg-
ments of functional connectivity gradients (Margulies 
et  al., 2016) as an alternative to overcome drawbacks 
associated with term-based meta-analytic methods.

In the current study, we performed topic-based meta-
analyses using an LDA model on article abstracts from 
Neurosynth and article abstracts, bodies, author-provided 
keywords, and titles from NeuroQuery. We generated 200 
different topics with two sets of probability distributions: 
(i) the probability of a word given topic p(word|topic) and 
(ii) the probability of a topic given article p(topic|article). 
To generate topic-wise meta-analytic maps, we con-
ducted a meta-analysis for each topic, where spatial 
mappings were indirectly computed via the documents’ 
topic loadings. Similar to term-based meta-analysis, we 
applied a frequency threshold of 0.05 to the probability 
p(topic|article) to eliminate articles that used the topic 

incidentally and created the meta-analytic sample of 
studies for a topic. Then, meta-analytic maps were gen-
erated by fitting the meta estimator MKDAChi2 class from 
NiMARE’s CBMA module to each article’s resulting mod-
eled activation maps of each article from the topic. Finally, 
for each database, we generated one meta-analytic map 
for each topic with the collection of words given by the 
top probability values of p(word|topic); that is, 200 meta-
analytic maps from Neurosynth and 200 meta-analytic 
maps from NeuroQuery.

2.3.2.3.  GC-LDA-based meta-analytic maps.  Recently, 
an extension to the LDA model, the GC-LDA, was intro-
duced by Rubin et al. (2017). The GC-LDA model adds 
spatial and semantic constraints to the data, which 
allows the model to generate topic maps with a maxi-
mized correspondence between cognition and brain 
activity. This method, in addition to the two probability 
distributions from LDA (i.e., p(word|topic) and p(topic|ar-
ticle)), produces an additional probability distribution: (iii) 
the probability of each topic given a voxel: p(topic|voxel). 
The default implementation of the GC-LDA decoding 
in  NiMARE makes use of a dot product continuous 
decoding approach: p(word | image) = τt ⋅ p(word | topic),  
where p(word | image) is the vector of term/word  
weight associated with an input image I (e.g., unt
hresholded and standardized segment map) and 
τt  = p(topic | voxel ) ⋅ I(voxel ) is the topic weight vector, 
I(voxel ) is a vector with z-score value for each masked 
voxel of the input image. The term p(word | image) gives 
the most likely word from the top associated topics for a 
given unthresholded statistical map of interest. However, 
to keep the GC-LDA decoding strategy comparable to 
the other two strategies in terms of producing meta-
analytic maps with high correlation across a segment of 
the gradient axis, we used the topic-wise meta-analytic 
maps given by the p(topic|voxel) distribution for func-
tional decoding. Thus, similar to the LDA approach, the 
final step of the GC-LDA approach was to generate, for 
each database, one meta-analytic map for each topic 
with the collection of words given by the top probability 
values of p(topic|voxel); that is, 200 meta-analytic maps 
from Neurosynth and 200 meta-analytic maps from  
NeuroQuery.

2.3.3.  Continuous decoding approach

Ultimately, these procedures yielded six different decod-
ing strategies derived from three sets of meta-analytic 
maps (i.e., term-based, LDA-based, GC-LDA-based) 
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and two databases (i.e., Neurosynth and NeuroQuery). 
We then applied a continuous decoding approach to 
decode the segmented gradient maps from the three 
segmentation approaches. Continuous decoding tar-
geted unthresholded statistical maps (e.g., unthresh-
olded pseudo-activation maps from the gradient axis). It 
can be accomplished by either generating correlation 
coefficients between unthresholded meta-analytic maps 
and unthresholded statistical maps or computing the 
dot product between them. We used the first approach, 
which is implemented in NiMARE’s Correlation 
Decoder class object (Fig. 1, Step 3.2). Table S1 sum-
marizes the six different strategies used in this study.

It is worth noting that although NiMARE could natively 
support any kind of data masker for both volumetric and 
surface data, it relies on Nilearn’s masker (Abraham et al., 
2014), which does not currently support the transforma-
tion from surface to volume space. Therefore, we imple-
mented a surface version of CorrelationDecoder to 
perform the functional decoding on surface space, given 
that gradient methods are natively implemented on the 
cortical surface (Vos de Wael et al., 2020). First, we trans-
formed meta-analytic maps across decoding strategies 
from the MNI152 space to the standard MNI fsLR 32K 
2-mm mesh surface space of the HCP, using the mni152_
to_fslr function from the neuromaps’ transforms  
module (Markello et al., 2022). Then, similar to the Cor-
relationDecoder approach, we generated correlation 
coefficients between vertex-level unthresholded meta-
analytic maps and unthresholded pseudo-activation 
maps from the gradient segments. As described in Step 
2.2 (Fig. 1, Step 2.2), n = 31 different segmentations of the 
principal gradient were generated, corresponding to num-
bers of segments ranging from k = 2 to k = 32.

2.3.4.  Evaluating significance of correlation values

Note that CorrelationDecoder does not test if null 
hypotheses of the correlations are driven by the 
specific topography of the map of interest. To address 
this issue, permutation tests have been implemented 
(Alexander-Bloch, Giedd, et al., 2013; Alexander-Bloch, 
Raznahan, et al., 2013; Vandekar et al., 2015), comparing 
the empirical correlation between two spatial maps of 
interest to a set of null correlations. We used a permuta-
tion test to evaluate the null hypothesis that the meta-
analytic and gradient maps were not significantly different. 
The null correlations were generated by correlating the 
maps of interest with a group of null maps. We leveraged 
non-parametric spatial permutation models, also known 

as the “spin permutation” model (Alexander-Bloch et al., 
2018; Baum et  al., 2020; Cornblath et  al., 2020; Váša 
et al., 2018; Vázquez-Rodríguez et al., 2019). We gener-
ated 1,000 null maps with identical spatial autocorrela-
tion to the maps of interest in surface space by randomly 
rotating the spherical projection of the meta-analytic 
maps. In particular, we applied the Váša method (Váša 
et al., 2018) using the gen_spinsamples function from 
the Python netneurotools’s stats module (Markello & 
Misic, 2021). This method produces a lower false positive 
rate than naive, parameterized, and non-parameterized 
data models; it also generates permutations without 
duplicates in the parcel assignments and without rotating 
the medial wall (Markello & Misic, 2021). Non-parametric 
p-values were estimated from the null distribution of cor-
relation values by calculating the fraction of null maps 
that generated a correlation equal to or greater than the 
correlation of interest. Finally, a false discovery rate (FDR) 
correction was performed using the Benjamini-Hochberg 
procedure (Benjamini & Hochberg, 1995). We considered 
the correlation between meta-analytic maps and gradient 
maps significant for FDR-corrected p-value < 0.05.

2.4.  Analysis step 4: performance of decoding strategies

Next, we evaluated the six decoding strategies for each 
segmentation approach (i.e., 18 pipelines). We used mul-
tiple metrics to compare the relative performance and 
utility across decoding strategies (Table 1). Our goal was 
to identify a decoding strategy with a high association 
with the gradient maps and meaningful and informative 
terms associated with coherent cognitive functions. 
Subsequent sections describe each metric in detail.

2.4.1.  Meta-analytic correlation profile

A successful gradient decoding framework should be 
able to produce meta-analytic maps with a high correla-
tion across segments of the gradient (Fig. 1, Step 4.1). It 
is common practice in continuous decoding approaches 
to select the term/topic maps that show the highest cor-
relation with the target map and use the associated 
labels to describe the input map. We selected the meta-
analytic map with the maximum correlation value for 
each segment for further analysis. We defined a correla-
tion profile for the principal gradient as a two-dimensional 
representation of the gradient axis, where the x-axis 
corresponds to the coordinates in gradient space and 
the y-axis corresponds to the top correlation for each 
gradient segment. The correlation profile metric was 



10

J.A. Peraza, T. Salo, M.C. Riedel et al.	 Imaging Neuroscience, Volume 2, 2024

inspired by previous work (Caciagli et al., 2022). Given 
the large number of evaluated meta-analytics maps, 
these correlations could be high by design. In addition, 
the different number of meta-analytic maps per strategy 
prevents us from comparing the correlation values that 
differ from the maximum.

2.4.2.  Semantic similarity

A successful decoding framework should also be able to 
classify a map of interest with meaningful and informative 
terms. To this end, we used two different semantic simi-
larity node-based metrics (Fig.  1, Step 4.2) to evaluate 
the properties of terms (Pesquita et al., 2009).

First, we examined the information content (IC), which 
measures how specific and informative a term is based 
on its annotation frequency. The IC of term t in document 
d is defined as the negative log-likelihood of the probabil-
ity of occurrence (p) of a term in a document:

	 IC t,d( ) = − log p t,d( ) 	

Higher values of IC are associated with less probable 
terms and thus more specific concepts (e.g., pain). Lower 
values correspond with high probable terms and thus 
more general/abstract concepts (e.g., fMRI, resonance) 
(Zhu & Iglesias, 2017). We used the combined corpora of 
article abstracts from Neurosynth and article abstracts, 
bodies, author-provided keywords, and titles from Neu-
roQuery to calculate the probability of occurrence 
p t,d( ) = f t,d( ) / N d( ), where f t,d( ) is the number of 
times the term t appears in document d and N d( ) is the 
total number of terms from the vocabulary in document 
d, N(d ) = Σt′∈df (t′, d ). Next, the IC value of a term associ-
ated with a meta-analytic map was determined by the 
average across the documents included in the meta-
analysis. In the case of topic-based meta-analytic maps, 
the IC was calculated as the sum of individual ICs from 
the top words in the topic.

Second, we computed an additional metric that 
accounts for the popularity of a term, thus establishing a 
balance between the specificity (i.e., IC) and the popular-
ity (e.g., frequency of annotation) of a term (Aizawa, 
2003). This metric is known as the term frequency-inverse 
document frequency (TFIDF), which is defined as the pro-
portion of the frequency of the word in a particular docu-
ment (term frequency: tf) to the percentage of documents 
the word appears in (inverse document frequency: idf):

TFIDF t,d( ) = tf × idf = −f t,d( ) × log
1+ d t,d( )
1+ D d( )

⎛
⎝⎜

⎞
⎠⎟
+1

⎡

⎣
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⎤
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where tf is the number of times that the term t appears 
in the abstract of document d f (t,d ), and idf (t,d ) is the 
negative log-likelihood of the proportion of the number 
of documents where the term appears to the total num-
ber of documents in the corpus D. The constant “1” 
was added to the denominator and denominator to pre-
vent zero division, and another “1” was added to the 
logarithm to avoid ignoring terms with zero idf. The 
TfidfTransformer class from the Python library 
scikit-learn (Abraham et al., 2014) was used to cal-
culate the TFIDF values. TFIDF determines how rele-
vant a given word is in a particular document. Common 
words in a single or a small group of documents tend to 
have higher TFIDF numbers than common words, such 
as articles and prepositions. The term’s relevance in a 
meta-analytic map can be computed, similarly to the 
IC, by averaging across the studies used in the meta-
analysis. Moreover, the TFIDF of a topic-based decoder 
was calculated as the sum of individual TFIDF from the 
top words in the topic.

2.4.3.  Signal-to-noise ratio profile

Finally, in a successful gradient decoding framework, the 
top terms of a particular segment of the gradient axis 
should be associated with clear, coherent, and useful 

Table 1.  Summary of decoding performance metrics.

Metric Summary Database References

CP Top correlation for each segment of the gradient NeuroQuery Neurosynth Caciagli et al. (2022)
IC Negative log-likelihood of the probability of occurrence 

(p) of a term (t) in a document (d).
NeuroQuery Neurosynth Pesquita et al., (2009)

TFIDF Inverse proportion of the word frequency in a  
particular document to the percentage of documents 
the word appears. TFIDF = tf x idf

NeuroQuery Neurosynth Aizawa (2003)

SNR SNR = # functional / # non-functional Expert Annotation Bottenhorn et al. (2018)

Note. CP, correlation profile. IC, information content. TFIDF, term-frequency inverse document frequency. SNR, signal-to-noise ratio.
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cognitive terms, facilitating meaningful functional inter-
pretations. However, Neurosynth terms are automatically 
extracted from papers, and not all extracted terms con-
tain helpful information. That is, terms such as “memory” 
or “attention” carry important functional meanings and 
are thus more useful than “brain” or “association”. There-
fore, in a typical decoding workflow, researchers often 
manually filter meta-analytic terms from Neurosynth and 
decode maps using the most meaningful terms, a pro-
cess that a single individual commonly carries out. We 
used Neurosynth and NeuroQuery terms to calculate 
each decoding framework’s signal-to-noise ratio (SNR) 
(Fig. 1, Step 4.3).

For Neurosynth terms, we implemented a crowd-
sourced approach in which 10 neuroimaging researchers 
of varying backgrounds and career stages provided man-
ual annotations of meta-analytic terms. Each term was 
classified according to four categories: “Anatomical”, 
“Functional”, “Clinical”, and “Non-specific”; these cate-
gories were initially described by Bottenhorn et al. (2018). 
“Anatomical” terms describe regions, networks, or loca-
tions in the brain (e.g., “cortex”, “acc”, “mpfc”). “Func-
tional” terms describe mental processes, tasks, or 
behaviors (e.g., “hand movements”, “visual”). “Clinical” 
terms describe participant-related characteristics, includ-
ing clinical diagnoses and symptoms (e.g., “adhd”, “alz-
heimer”), as well as age and gender. “Non-specific” terms 
provide no useful information about the study, such as 
general terms found in articles (e.g., “useful”, “influ-
ences”) or methodological terms (e.g., “correlation”, 
“high resolution”). For NeuroQuery, we also used the 
expert annotation for terms present in Neurosynth. The 
rest of the terms were annotated based on the classifica-
tion provided by NeuroQuery, which is available on 
GitHub (www​.github​.com​/neuroquery/neuroquery_data/
blob/main/data/data-neuroquery_version-1_termcatego-
ries.csv).

Using the annotations, we created a frequentist prob-
ability distribution to classify each term automatically: 
p(category|word). We classified a term using the category 
with a probability greater than 0.5. For topic-based 
decoding, we used the term classification distribution to 
classify topics. In this case, the probability for topics was 
calculated as the sum per category of the p(catego-
ry|word) weighted by the p(word|topic). If the categories 
failed to reach the 0.5 thresholds, the topic was classified 
as “Non-specific”. As demonstrated by Bottenhorn et al. 
(2018), SNR for a decoding framework is defined as the 
proportion of functional (i.e., “Functional”) to non-
functional (i.e., “Anatomical”, “Clinical”, and “Non-

specific”) terms. The SNR for each segment solution of 
the connectivity gradients was calculated from the clas-
sification of the individual meta-analytic maps associated 
with each spectrum segment. Greater SNR was expected 
for a more informative functional characterization of the 
connectivity gradient.

2.4.4.  Visualization of decoded gradient maps

The final step of meta-analytic decoding is to report find-
ings and generate an appealing and effective visualiza-
tion. Across the literature, two different visualization 
strategies are commonly employed. First, radar plots 
(Bartley et  al., 2019; Chang et  al., 2013; Chase et  al., 
2020; de la Vega et  al., 2016) illustrate the top meta-
analytic terms or topics associated with a decoded map. 
Second, word clouds (Fan et  al., 2022; Laubach et  al., 
2018; Riedel et  al., 2019; Rubin et  al., 2017) represent 
term frequency. We combined the two plots in a single 
figure to show a hierarchical view of the decoding results 
across gradient maps (Fig. 1, Step 5). Before generating 
the visualizations, we filtered out the meta-analytic terms/
topics without coherent cognitive function association 
using our expert annotations (i.e., “Non-specific” terms 
were excluded) and those with correlations that were not 
statistically significant.

2.5.  Analysis step 5: multidimensional decoding

Finally, we propose methods for decoding lower-order 
gradient maps (e.g., second and third gradients). Natu-
rally, we could consider applying the same segmentation 
and decoding approach proposed in the last four analy-
sis steps to lower-order gradients separately. The second 
and third gradients normally account for around 15% and 
10% of the variance, respectively; thus, they still repre-
sent significant connectivity information. However, 
decoding these maps alone could mislead functional 
interpretations, given that the new segments for decod-
ing would be defined with limited information from the 
original connectivity matrix.

Therefore, we suggest analyzing all the components 
together in a high-dimensional space. As was shown in 
the work by Margulies et al. (2016), analysis of the first 
and second gradient gradient together yielded results in 
which the additional second component separated one 
end of the spectrum in the somatomotor and visual net-
works. Similarly, adding the third component to the anal-
ysis can delineate the frontoparietal network in the 
intermediate transition from transmodal to unimodal 

http://http://www.github.com/neuroquery/neuroquery_data/blob/main/data/data-neuroquery_version-1_termcategories.csv
http://http://www.github.com/neuroquery/neuroquery_data/blob/main/data/data-neuroquery_version-1_termcategories.csv
http://http://www.github.com/neuroquery/neuroquery_data/blob/main/data/data-neuroquery_version-1_termcategories.csv
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Fig. 2.  Segmentation of the Principal Gradient. Segmentation of the principal gradient with three different approaches: 
PCT, KMeans, and KDE. Thirty-one different segmentations were generated, ranging from a solution of 2 to 32 segments. 
(A) Three distinctive and representative solutions are provided for 3, 17, and 32 segments. The segmentation algorithm 
determines the boundaries, where the red point indicates the peak activation corresponding to the median point, center of 
inertia, and local maximum for PCT, KMeans, and KDE, respectively. (B) The continuous vertex-level values range between 
0 and 1, where 1 represents values closer in space or strongly connected to the reference point, and 0 indicates elements 
closer to the boundaries or weakly connected to the reference point. See Figure S4 for the complete set of segment 
solution plots. The rest of the gradient map plots are in the Supplementary Results.

regions within the gradient (Smallwood et  al., 2021). In 
this high-dimensional space, the joint gradient will 
account for more than 70% of the variance, improving 
the performance of the segmentation algorithm given 
that a high-dimensional space will provide a better 
approximation of the n-dimensional distances from the 
original connectivity matrix.

In this high-dimensional space, the clusters are defined 
only by the k-means approach. This method is the only 
approach from the previous analysis compatible with high-
dimensional data. The best solution for the number of 
components and number of clusters was selected based 
on the same criteria from the previous analysis using the 
mean silhouette coefficient (Rousseeuw, 1987), the vari-
ance ratio score (Caliński & Harabasz, 1974), and the clus-
ter separation score (Davies & Bouldin, 1979). Then, the 
pseudo-activation maps were defined with the same 
Gaussian kernel described above and calculated with 
respect to the center of inertia within each cluster.

3.  RESULTS

3.1.  Analysis step 1: functional connectivity gradient

To achieve the goals of this paper, we used the rs-fMRI 
group-average dense connectome from the Human Con-
nectome Project (HCP) S1200 data release. The z-values 

from the dense connectome were inverted to correlation 
coefficients, thresholded, and converted to cosine simi-
larity values. This matrix comprises 91,282  ×  91,282 
grayordinates, including cortical regions (59,412 vertices) 
in surface space and subcortical structures (31,870 vox-
els) in volume space. Diffusion embedding was applied to 
the cosine similarity affinity matrix using the mapalign 
repository. We used the gradient with the highest vari-
ance explained, the principal gradient, for the first four 
analyses. Only the cortical regions were considered for 
this analysis. We added the 5,572 vertices from the 
medial wall for 64,984 vertices (32,492 per hemisphere) 
for visualization. Figure S1 shows the connectivity matrix, 
affinity matrices, and the principal gradient.

3.2.  Analysis step 2: segmentation and gradient maps

Our first aim was to evaluate three segmentation 
approaches: (i) percentile-based segmentation, (ii) seg-
mentation based on a 1D k-means clustering approach, 
and (iii) segmentation based on the Kernel Density Esti-
mation (KDE) curve of the gradient axis. For each seg-
mentation approach, n = 31 different segmentations of 
the principal gradient were generated, corresponding to 
segments ranging from k = 2 to k = 32, for a total of  
93 maps. Figure 2 shows the segmentation for 3, 17, and 
32 segment solutions. Figure 2A shows the position of 
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the boundaries as determined by the different segmen-
tation algorithms, with the peak activation point (red 
dot), which corresponded to the median point, center of 
inertia, and local maximum for PCT, KMeans, and KDE, 
respectively. We notice more diverse boundaries across 
segmentation methods for small-segment solutions, 
with KMeans and KDE showing overlapping solutions at 
the right end of the spectrum. In contrast, the boundar-
ies determined by PCT and KMenas for a large-segment 
solution show some overlapping. In Figure  S5, we 
reported the similarity between the three segmentation 
methods across segmentation solutions. The separa-
tions provided by the segmentation approaches were 
more similar for a large number of segment solutions. 
Next, we determined pseudo-activation maps using a 
Gaussian kernel of the Euclidean distances defined in 
the gradient space, minimizing the effect of boundaries. 
These maps were the target of the decoder algorithms. 
Figure  2B illustrates the resultant continuous pseudo-
activation maps by segments.

Silhouette scores were computed for each segment 
solution and segmentation algorithm at the vertex level. 
Figure 3 presents a comprehensive analysis of the sil-
houette coefficient by depicting it in three distinct ways: 
a) as a distribution, b) in terms of cluster imbalance, and 
c) through confidence maps. Figure  3A illustrates the 
distribution of the silhouette coefficient for three different 
clustering algorithms (i.e., PCT, KMeans, and KDE) and 
for three distinctive segment solutions. On average, the 
three methods performed best for a small segment solu-
tion, with KMeans slightly better than the others, with a 
median value over 0.2. PCT and KDE showed the high-
est number of vertices with negative silhouette coeffi-
cients, indicating vertices assigned to the wrong 
segment. The maximum silhouette score observed for 
this solution was around 0.4. However, with an increase 
in the number of segments, the average performance of 
all methods declined for elements inside intermediate 
segments and improved for elements inside the two end 
segments. For example, for the 17-segment solution, 

Fig. 3.  Silhouette Coefficients, Cluster Imbalance, and Confidence Maps. (A) Distributions of vertex-wise silhouette 
coefficient are provided for three different and representative segment solutions (e.g., 3, 17, and 32 segments); the values 
range from -1 to 1, where +1 indicates that the vertex was assigned to the correct cluster, a value of 0 indicates that the 
vertex is on or very close to the decision boundary between two neighboring clusters, and -1 indicates the vertex might have 
been assigned to the wrong cluster. (B) Cluster imbalance is plotted as the silhouette coefficient density for each segment 
solution and segmentation approach per segment to visualize the density of vertices that were assigned to the correct (i.e., 
positive values) or the wrong (i.e., negative values) segments within each segment. Within each segment, values in the 
x-axis are sorted according to their values in the y-axis. (C) Confidence maps are represented by the silhouette coefficient 
of each vertex to its assigned network. Regions close to the boundaries between networks showed less confidence in their 
assignment. The best value is 1, and the worst is -1; values near 0 indicate overlapping clusters. The distribution, cluster 
imbalance, and confidence maps for the rest of the segment solutions can be found in the Supplementary Results.
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Fig. 4.  Mean Silhouette, Variance Ratio, and Cluster 
Separation Scores. Mean silhouette coefficient, variance 
ratio, and cluster separation plotted by segment solution 
across segmentation approaches to determine relative 
performance, with the highest mean silhouette score, 
highest variance ratio, and lowest cluster separation 
representing the best performance (red circle).

KMeans and KDE showed a small group of elements 
with values over 0.6 silhouette score. Interestingly, the 
KDE method shows a higher concentration of vertices 
with positive silhouette coefficients, indicating a better 
clustering solution, given that most of the local maxi-
mum were in the middle of the spectrum.

Figure 3B presents the silhouette coefficient across 
segments within each segment solution. For a small 
number of segments (e.g., three segments), the PCT 
solution yielded segments at both ends of the spectrum 
with all positive coefficients; nevertheless, it wrongly 
assigned a significant number of vertices to the interme-
diate segment. KDE yielded a small fraction of segments 
incorrectly assigned in the first and last segments. Con-
versely, KMeans shows the most precise assignment 
with a more balanced number of vertices with positive 
silhouette coefficients across segments. Increasing the 
segment solution diminished the performance of the 
three methods, especially in intermediate segments. 
However, the silhouette coefficient increased in seg-
ments at one end of the gradient axis. For example, for 
the 17-segment solution, KMeans and KDE showed val-
ues over 0.6 silhouette score at the left-side end. In gen-
eral, the highest balance in assignment across segment 
solutions was produced by KMeans. Lastly, Figure 3C 
illustrates which regions of the cortical surface were 
most affected by the segmentation approach. Aligned 
with Figure 3B, the values with the highest confidence 
were found in the segments located at both ends of the 
spectrum.

Mean silhouette scores, variance ratio, and cluster 
separation were computed to determine relative perfor-
mance across percentile-based, k-means-based, and 
KDE-based segmentations. The highest mean silhou-
ette score, highest variance ratio, and lowest cluster 
separation represented the best performance. As illus-
trated in Figure 4, KDE exhibited the highest average of 
the mean silhouette coefficient across different segment 
solutions, ranging between 0.05 and 0.15 for 5-32 seg-
ment solutions. The variance ratio of the three methods 
was very similar across segment solutions. In contrast, 
PCT showed the lowest cluster separation across seg-
ment solutions. Overall, all segmentation approaches 
yielded better results for two segment solutions. The 
best scores were silhouette = 0.24 (KMeans), variance 
ratio  =  28,575 (PCT), and cluster separation  =  1.29 
(KDE). In particular, KMeans achieved the best top  
two performances across the three metrics (silhou-
ette  =  0.24, variance ratio  =  28,566, cluster separa-
tion  =  1.32) for the two-segment solution (Fig.  S6). 
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These findings highlight the importance of choosing the 
most appropriate clustering method based on the num-
ber of segments required and the desired accuracy.

3.3.  Analysis step 3: meta-analytic functional decoding

Next, six different sets of meta-analytics maps were pro-
duced by the combination of two meta-analytic data-
bases (i.e., Neurosynth and NeuroQuery) and three 
meta-analytic methods (i.e., term-based, LDA-based and 
GC-LDA-based meta-analysis). The meta-analytics maps 
that resulted from each strategy can be found in the Sup-
plementary Results (Fig. S7).

3.4.  Analysis step 4: performance of decoding strategies

Our second aim was to assess the performance of 18 
meta-analytic decoding/segmentation strategies using 
multiple metrics, including a correlation profile, two 
semantic similarity measures, and a normalized signal-
to-noise ratio (SNR).

3.4.1.  Correlation profile

First, we assumed that a successful gradient decoding 
framework should be able to produce meta-analytic 
maps with a high correlation across segments of the 
gradient. Thus, we next performed a detailed analysis of 
the correlation profile and maximum correlation coeffi-
cient, as shown in Figure 5. The correlation profile curve 
(Fig. 5A) shows an exponential decrease in the average 
of maximum correlation coefficients across segment 
solutions for each combination of segmentation 
approach, meta-analytic method, and database. Then, 
the correlation curve reaches a plateau for segment 
solutions with more than 15 segments. The highest 
average correlation value was the two-segment solution 
of the NQ-TERM-PCT approach (0.73 ± 0.03). The best 
performance across segment solutions was achieved 
through PCT segmentation and term-based decoder 
with Neurosynth (0.23 ± 0.14). GC-LDA-based decoders 
showed the worst performance across segmentation 
solutions (0.16 ± 0.15). In general, we did not observe a 
considerable difference between NS and NQ combina-
tions. In some cases, NS performed slightly better (e.g., 
17-segment solution: NS = 0.19 ± 0.16, NQ = 0.18 ± 0.16), 
and in others, NQ showed higher correlation values 
(e.g., three-segment solution: NS  =  0.46  ±  0.22, 
NQ  =  0.47  ±  0.22). Concerning segmentation 
approaches, PCT performed best (0.21  ±  0.13), while 

KMeans (0.18  ±  0.16) performed better than KDE 
(0.15 ± 0.19) across segmentation solutions. Figure 8A 
provides a complete comparison, including all models 
and segment solutions.

Figure 5B represents the correlation profile within seg-
ment solutions. The profile exhibits a u-shaped curve, 
where correlation at both ends of the spectrum was 
higher than the rest of the segments, with the left end 
showing the highest correlation coefficient from maxi-
mum values around 0.7 for three segments to around 0.6 
for 32 segments. Similarly, the right end shows maximum 
values of 0.6 and 0.3 for three and 32 segments, respec-
tively. The low correlations achieved by all models in the 
middle of the spectrum drove the low overall performance 
of all decoder approaches. An increase in the segment 
solution also increased the number of intermediate seg-
ments, making it worse. The decrease of the standard 
deviation of the mean with the increase in the segment 
solution also showed a rise in most segments with low 
performance in the overall mean per segment solution. 
Overall, including additional low-correlation values from 
intermediate segments drove the decrease in overall per-
formance with the increase in segment solution. In partic-
ular, we observed a change in the correlation coefficient 
with the size of the segments for maps with less than 
10,000 vertices (Fig.  S8). These vertices represent 
approximately 15% of the brain cortical surface on MNI 
fsLR 32K.

3.4.2.  Semantic similarity

Second, we assumed that a successful decoding 
framework should produce meaningful and informative 
terms. Therefore, we used two different semantic simi-
larity node-based metrics to evaluate properties of 
words. For example, information content (IC), which 
measures how specific and informative words are 
based on their annotation frequency, and frequency-
inverse document frequency (TFIDF), which accounts 
for the term’s popularity in the whole corpus. Figure 6 
summarizes the results of these semantic similarity 
metrics across segment solutions and for three differ-
ent segment solutions.

Figure 6A presents the result of the mean information 
content of the top term across segment solutions. Decod-
ing strategies that included LDA or GC-LDA yielded a 
collection of terms that resulted in the highest informa-
tion content, with LDA (IC  =  22.40  ±  3.21) showing a 
slightly better performance than GC-LDA (IC  =  18.57 
± 3.18). Moreover, the topic-based strategies that used 
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Fig. 5.  Correlation Profile. Correlation profile of the means within segment solution of maximum correlation coefficients 
across the combination of models (Term, LDA, and GC-LDA), databases (Neurosynth: NS and Neuroquery: NQ), and 
segmentation approach (PCT, KMeans, and KDE). In the horizontal block, three distinctive segment solutions (3, 17, and 
32) are shown, containing the meta-analytic maps (the second 6 rows) that showed the highest correlation coefficient 
with gradient maps (top row) from a segmentation approach (columns). The horizontal plot shows the correlation profile 
within a segment solution, and the rectangular box at the right shows each model’s mean and standard deviation of each 
model within each segment solution. The correlation profile for the rest of the segment solutions can be found in the 
Supplementary Results.
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Fig. 6.  Semantic Similarity Profile. Average semantic similarity metrics: (A) information content (IC) and (B) term-
frequency inverse document frequency (TFIDF) across segment solutions for the 18 different decoding strategies. (C) 
Terms associated with the meta-analytic maps of maximum correlation with the corresponding segment ID. The IC and 
TFIDF profile for each segment solution can be found in the Supplementary Results.
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NS (IC  =  17.87  ±  7.22) performed better than those 
trained with NQ (IC = 15.11 ± 5.49). On the other hand, 
term-based models only produced a single word per 
map, which yielded the worst information content 
(IC = 8.48 ± 2.30) of all pipelines. Figure 6B illustrates the 
mean TFIDF of the top terms for all segment solutions. 
Similarly, topic-based models produced relatively good 
performance (LDA-TFIDF  =  0.13  ±  0.06, GC-LDA-
TFIDF  =  0.17  ±  0.08), with the model that uses NQ 
(TFIDF  =  0.13  ±  0.09) having higher TFIDF than NS 
(0.09  ±  0.07) across segment solutions. Term-based 
decoders also performed poorly (TFIDF = 0.04 ± 0.02) for 
this metric. Figure 8A provides a complete comparison, 
including all models and segment solutions.

In Figure 6C, we present the top words produced by the 
different decoding strategies for three distinctive segment 
solutions and three subsegments within each segmenta-
tion solution. For solutions with a small number of seg-
ments, we observed a high discrepancy between the top 
words between the models. However, within each model, 
we noticed a certain similarity in the terms, for example, 
“sensorimotor cortex” and “primary” for the left end of 
term-based decoders, “sensorimotor” and “sma” for LDA, 
and “activation” and “low” for GC-LDA. In particular, strat-
egies where only the segmentation approach was different 
show the highest similarities. Similarly, for larger-segment 
solutions (e.g., 17 and 32), the words within the meta-
analytic decoder continued to be very similar, and there 
was still a more substantial difference between modes. 
Interestingly, the terms at both ends for this number of 
segments were associated with terms with less cognitive 
content, for example, words like “cortex”, “cortical”, “mag-
netic”, and “resonance”, which do not provide much value 
for functional interpretation of a given map.

3.4.3.  Signal-to-noise ratio

Finally, we assumed that in a successful gradient decod-
ing framework, the top terms that label a particular seg-
ment of the gradient axis should be associated with clear, 
coherent, and valuable cognitive terms to facilitate mean-
ingful functional interpretations. For that purpose, terms 
were classified according to four categories: “Anatomi-
cal”, “Functional”, “Clinical”, and “Non-specific” by a 
team of 10 neuroimaging researchers. In particular, we 
were interested in functional terms. Figure S9 presents 
the result of the classification.

We next calculated the normalized signal-to-noise 
ratio (SNR) for each decoding strategy using the classifi-
cation of the top terms across subsegments for each 

segment solution. Here, the SNR for a decoding frame-
work was defined as the normalized proportion of func-
tional to non-functional terms. Figure  7 presents the 
results of the SNR across segment solutions and the indi-
vidual classification within three distinctive solutions.  
Figure  7A illustrates the normalized SNR values of all 
decoding frameworks. Term- and GCLDA-based decod-
ers showed the highest SNR values for all segment solu-
tions, while LDA decoders produced the lowest SNR 
across segment solutions. Regarding meta-analytic 
databases, NQ showed the highest SNR for a two-
segment solution. See the heatmap in Figure  8A for a 
complete comparison, including all models and segment 
solutions.

Figure 7B presents the individual classification within 
three distinctive segment solutions. For a small number 
of segments, we see that most models found a functional 
term/topic at the end of the spectrum (i.e., 50 and 60 for 
the left and rightmost segments, respectively). For inter-
mediate segments, slightly over 60 percent of the terms 
were classified as functional. However, an increase in the 
number of segments yielded fewer functional terms at 
both ends of the spectrum while producing more func-
tional terms in middle segments. Generally, frameworks 
that used NQ were most likely associated with functional 
terms at both ends of the spectrum, regardless of the 
meta-analytic model or segmentation approach. For a 
large number of segments (e.g., 32), NS did not produce 
any top maps at the left end that were associated with 
functional terms, as they were classified as “Anatomical” 
or “Non-Specific”. In particular, we noticed that when the 
term was classified as non-functional, terms tended to be 
associated with “Anatomical” or “Clinical” words. In con-
trast, LDA- and GC-LDA-based decoders were mainly 
associated with “Non-specific”. Lastly, we noticed that the 
difference in the functional terms between NS and NQ 
tends to be less distinctive in the middle of the spectrum.

We next sought to filter the results of the top meta-
analytic maps and only keep those classified as “Func-
tional”. After examining the results from all the functional 
decoders together, it was clear that the segmentation 
technique had minimal to no influence on the ultimate 
result of functional decoding for a large number of seg-
ment solutions at both ends of the spectrum, as the word 
clouds showed similar words regardless of the segmen-
tation algorithm used (Fig. S10). The stability in clustering 
at both ends of the gradient, especially for a large-
segment solution (Fig. S5), results from applying a data-
driven segmentation approach (e.g., PCT, Kmeans, or 
KDE) to a 1D axis (i.e., the principal gradient).
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Fig. 7.  Normalized Signal-to-Noise Ratio. (A) SNR from classifying terms and topics across segment solutions for the 18 
decoding strategies. (B) Classification of the term associated with the meta-analytic maps of maximum correlation with 
the corresponding segment ID; and proportion of “Functional”, “Clinical”, “Anatomical”, and “Non-specific” terms within 
segment solution. The classification plots for the rest of the segment solutions can be found in the Supplementary Results.
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Fig. 8.  Overall Performance. (A) The five heatmaps present the performance of the 18 methods across the 31 segment 
solutions using three clustering performance metrics and the four benchmark metrics to evaluate the segmentations, 
decoding algorithms, and meta-analytic database. Strategies that performed over the threshold were marked with a red 
square using a 90th percentile for the correlation coefficient and SNR and a 70th percentile for IC and TFIDF, which provided 
a unique solution. (B) Summarize the performance of all benchmark metrics. The heatmap was determined by summing 
the five thresholded binary matrices from the individual heatmaps. The red square marks the unique solution and best-
performing strategy (NQ-LDA-KMeans for two-segment solution).
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3.4.4.  Overall performance and optimal strategy

Together with the above results, we reviewed 18 combina-
tions of segmentation approaches, meta-analytic decod-
ers, and databases. Figure 8 presents the results of the 
four benchmark metrics for the 18 methods and 31 seg-
ment solutions, along with a heatmap summarizing the 
overall performance. In Figure 8A, we marked the strate-
gies that performed over the threshold with a red square. 
We defined the threshold using a 90th percentile for the 
correlation coefficient and SNR and a 70th percentile for IC 
and TFIDF, which were the maximum values, respectively, 
that yielded a unique solution for the overall performance. 
In Figure  8B, results shown in the five heatmaps from  
Figure 8A are summarized. The best-performing strategy 
was the LDA-based meta-analysis on the NeuroQuery 
database applied to a two-segment solution determined 
by the k-means algorithms (NQ-LDA-KMeans for two-
segment solution). The only metric where NQ-LDA-
KMeans did not perform well was SNR, which can be 
addressed in the future by filtering non-functional terms 
from the decoding model. Here, we also accounted for the 
performance of the segmentation approaches alone, as 
determined in analysis step 2 (Fig. S6).

Next, we aimed to generate a figure that delineates the 
results in a way that most effectively facilitates the inter-
pretation of the functional gradients. Figure 9 presents the 
functional decoding of the connectivity gradient for the 
best-performing strategy (NQ-LDA-KMeans) according to 
Figure  8B. “Non-functional” terms and terms that were 
associated with a meta-analytic map that did not have a 
significant correlation (i.e., FDR-corrected p-value >0.05) 
with the gradient map were removed from the radar and 
word cloud plots. The first column shows the principal gra-
dient as the target for decoding (Fig. 9A). The second col-
umn presents the gradient maps that resulted from the 
segmentation of the gradient axis (Fig. 9B). The last two 
columns illustrate the result of the decoding algorithm for 
each gradient map (Fig. 9C). The radar plots show the top 
meta-analytic terms and their corresponding correlation 
values. The word clouds, on the other hand, provide a 
more inclusive representation of the terms more likely 
associated with the corresponding gradient maps. Overall, 
the proposed figure displays everything in a hierarchical 
view that helps to describe the gradient from top to bot-
tom, capturing the continuous transition from unimodal 
primary sensorimotor regions associated with “motor” and 
“movement” to transmodal regions associated with the 

Fig. 9.  Visualization Approach for Decoding Results of the Principle Gradient of Connectivity. (A) Principal gradient of 
functional connectivity of the cortical surface. (B) Segmentation of the principal gradient using a KMeans approach for a 
segment solution equal to two. (C) Results of the functional decoding as shown by a radar plot and a word cloud using 
an LDA-based meta-analytic map generated using NeuroQuery. Radar plots present the top ten functional terms from 
statistically significant meta-analytic maps associated with each segment, sorted according to their values, where the 
values represent correlation coefficients ranging from -1 to 1, with the maps that yielded the highest correlation plotted in 
the angle equal zero degrees in polar coordinates. Word cloud plots were generated using a frequency estimated by the 
normalized probability of the topic given the word weighted by the correlation coefficient of the corresponding maps.
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Fig. 10.  Multidimensional Clustering. Mean silhouette, 
variance ratio, and cluster separation scores are plotted 
by segment/cluster solution across gradient dimensions 
to determine relative performance, with the highest mean 
silhouette score, highest variance ratio, and lowest cluster 
separation representing better relative performance (red 
circle). The segmentation of G1:Gn was performed in the n-
dimensional space, that is, it included gradient 1, gradient 
2, …, and gradient n.

default mode network and representative of abstract func-
tioning, as it was first described by Margulies et al. (2016).

3.5.  Analysis step 5: decoding multidimensional gradients

3.5.1.  Multidimensional segmentation

Finally, we propose a method for decoding lower-order 
gradient maps (e.g., second and third gradients), in which 
all the components are analyzed together in a high-
dimensional space. To test this method, first, we per-
formed k-means clustering of the gradient for nine different 
dimensions, ranging from 1D (i.e., only includes the princi-
pal gradient: G1) to 9D (i.e., includes the nine first gradi-
ents: G1:G9). Mean silhouette scores, variance ratio, and 
cluster separation were computed to determine the rela-
tive performance of the k-means clustering solution across 
the different dimensions and clustering solutions. The 
highest mean silhouette score, highest variance ratio, and 
lowest cluster separation represented the best perfor-
mance. As illustrated in Figure 10, the best performance 
was observed when including more than two gradients 
(2D) in the clustering algorithm, with the best clustering 
solutions ranging from two to seven clusters. Figure S11 
summarizes the performance using heatmaps. In particu-
lar, we found that a four-cluster solution produced the best 
solution when including the first seven gradients 
(Fig. S11b). For the next step, as an illustration of high-
dimensional decoding, we limited the analysis to 4D space 
(i.e., the first four components), which has been the focus 
of attention in the community in recent years (Hong et al., 
2019, 2020; Margulies et al., 2016; Paquola et al., 2019). 
Although the clustering at 7D space performed better, we 
showed that the four clusters in 4D were very similar 
(NMI  =  0.89) (Fig.  S12). Clustering similarity was deter-
mined using the normalized mutual information (NMI) 
(Peraza et al., 2020).

3.5.2.  Multidimensional decoding

Next, we performed meta-analytic decoding of the four 
clusters determined by k-means on 4D gradient space. 
The first four gradients accounted for 75% of the cumu-
lative explained variance. Figure 11 presents the result of 
the decoder in this high-dimensional space. For visual-
ization, we projected the four gradients to 2D space 
defined by gradients 1 and 3. Additional projections to 2D 
space combining different gradients can be found in the 
Supplementary Information (Fig. S13). We found cluster 1 
to be associated with the default mode network (DMN), 
cluster 2 with the frontoparietal network, cluster 3 with 
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the visual network, and cluster 4 with the sensorimotor 
network. Notably, the functional organization defined in 
high-dimensional space was not exactly reproduced by 
analyzing lower-order gradients separately (Fig. S14).

4.  DISCUSSION

In recent years, investigating macroscale gradients of 
functional connectivity has become one of the most popu-
lar methods for understanding functional brain organiza-
tion. In the present study, we investigated and sought to 
improve the framework of data-driven methods for decod-
ing the principal gradient of functional connectivity, thereby 
promoting best practices for understanding its underlying 
mechanisms. We evaluated 18 different decoding strate-
gies, which consisted of three segmentation approaches 

combined with three meta-analytic methods and two 
databases. First, we found that a data-driven segmenta-
tion determined by a k-means algorithm produced the 
most balanced distributions of boundaries with the highest 
vertex-wise and mean silhouette coefficient across seg-
ment solutions. We also determined that a small number of 
segments (e.g., two-segment solution) and larger maps 
(i.e., more than 15% of the brain cortical surface) are pre-
ferred for producing maps with high silhouette scores and 
obtaining high precision in correlation decoders. Further-
more, we observed that an LDA-based decoder, besides 
showing a high average of top correlation scores, yielded 
the highest information content, TFIDF, and SNR. Finally, 
although we noticed minimal differences between the two 
meta-analytic databases tested in this work, the Neuro-
Query database showed a higher SNR, provided by the 

Fig. 11.  Multidimensional Decoding. Four cluster solutions were determined with the first seven gradients. For 
visualization, the scatter plot was represented as a projection of the 4D space to the 2D space, determined by gradients 
1 and 3. The four clusters are represented in the scatter plot with four distinctive colors. Cluster 1 (red) DMN. Cluster 2 
(grays) frontoparietal network. Cluster 3 (green) visual network. Cluster 4 (blue) sensorimotor network. Word cloud plots 
were generated using a frequency estimated by the normalized probability of the topic given the word weighted by the 
correlation coefficient of the corresponding maps.
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richness of its vocabulary compared to Neurosynth. The 
following sections discuss the implications of using a spe-
cific segmentation algorithm, meta-analytic decoder, and 
database for decoding connectivity gradients.

4.1.  Segmentation of connectivity gradients

The segmentation of the connectivity gradient, the first 
step in the decoding framework, allows us to character-
ize the entire gradient spectrum by individually decoding 
the smaller segments as if they were independent brain 
maps. This step helps address limitations of standard 
meta-analytic decoding, which otherwise would yield 
associations to only vertices at the positive end of the 
gradient axis, leaving negative coordinates at the other 
end unexplained. In this study, we demonstrated that the 
number of segments and the segmentation approach 
affect the final results of decoding strategies.

First, we found that the segment solution had a major 
influence on the final result. Indeed, for small numbers of 
segments, a KMeans algorithm yields the most confident 
distribution of boundaries, as shown by the silhouette 
coefficients, variance ratio, and cluster separation. Fur-
thermore, we determined that a large number of seg-
ments was detrimental to the performance of correlation 
decoders, as the average of the top correlation values 
decreases exponentially with the increase of the segment 
solution. Although a large number of segments does not 
directly affect the final result of the decoder after filtering 
the word to keep only functional terms, and as shown by 
the word cloud at both ends of the spectrum, a higher 
number of segments resulted in additional challenges to 
condense the decoding results for intermediate seg-
ments. More importantly, the decoder results for interme-
diate segments are less reliable than those on both ends, 
given the low precision of the correlation decoder with 
high sparsity maps. As a result, we recommend treating 
results from these subsegments with caution. Prior work 
has used an arbitrary number of segments ranging from 
10 to 20 (Caciagli et al., 2022; Hong et al., 2019; Margulies 
et  al., 2016; Paquola et  al., 2019; Wang et  al., 2023). 
Here, we recommend against using that many segments 
as there was a decrease in the silhouette score and a 
reduction in the reliability of correlation decoders. Fur-
thermore, many subsegments complicate the classifica-
tion of segments in the middle of the spectrum without 
adding extra benefits to characterizing the gradient as a 
whole. When analyzing the principal gradient of func-
tional connectivity, we recommend using a two-segment 
solution, given the high silhouette coefficient, good rela-

tive performance for correlation decoders, and the 
absence of intermediate segments.

For higher-segment solutions, the selection of the seg-
mentation algorithm only produced minor effects on the 
final results. The word clouds showed similar terms regard-
less of the segmentation algorithm used. Such similarity 
arises from the stability in clustering solutions for the two 
end segments of the gradient, especially for a large-
segment solution. That similarity was less clear for a small 
number of segments, where the segment solution was 
more distinctive across segmentation approaches. Strate-
gies using KDE performed well in their segment assign-
ment as measured by the silhouette coefficient. However, 
the computation of the boundaries is computationally 
expensive, especially for a large number of segments. As 
such, we recommend against using this algorithm. Previ-
ous work has used an arbitrary PCT segmentation 
approach, which yields a well-balanced segment assign-
ment across solutions given the relatively high silhouette 
coefficients. Ultimately, we recommend using a KMeans 
algorithm, which yields one of the two highest silhouette 
coefficients, variance ratio, and lowest cluster separation 
for the two-segment solution. Furthermore, the k-means 
algorithm allows for additional components from the 
dimensionality reduction, which produces an improved 
gradient segmentation.

4.2.  Meta-analytic decoder

Starting from the premise that the labels associated with 
the meta-analytic maps accurately represent the underly-
ing cognitive constructs, our goal was to identify the 
meta-analytic maps with the highest correlation value to 
the target map. Further, we expected such maps to be 
associated with a meaningful collection of terms and thus 
comprise high information content, TFIDF, and SNR.

As predicted, term-based decoders performed better 
than LDA and GC-LDA in terms of their correlation val-
ues, which is likely a natural outcome for a model with a 
large number of available maps in comparison to the 
fixed number of maps for topic-based decoders (i.e., 200 
topics maps). Although the top term-based maps accu-
rately matched specific stimuli, their labels are known to 
be redundant and ambiguous, given that they only con-
sist of a single term. As a result, we hypothesized that 
such a model offers a limited characterization of the tar-
get maps. Here, we demonstrated the veracity of those 
previous assumptions by showing how the term-based 
decoder yielded lower information content and TFIDF.  
On the other hand, topic-based meta-analytic models 
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generated maps labeled with numerous terms per map, 
thus addressing the redundancy and ambiguity of the 
single term from term-based decoders. In particular, 
LDA-based produced meta-analytic maps that yielded a 
relatively high correlation value and a collection of terms 
that naturally improved the information content, TFIDF, 
and SNR. Noteworthy, correlation decoders showed a 
decrease in precision when the target maps spanned less 
than 15% of the brain cortical surface.

Although GC-LDA maps exhibited poor performance 
in terms of correlation coefficient when used in a cor-
relation decoder framework, we think that the GC-LDA 
decoder, as implemented in the original paper by Rubin 
et al. (2017), will provide a more accurate characteriza-
tion of the gradient maps. Therefore, we recommend 
against using GC-LDA maps in a correlation decoder 
framework. Although term-based decoders perform 
very well in terms of their correlation coefficient, we 
suggest using an LDA-based decoder combined with a 
large number of topics (e.g., between 100 and 200 top-
ics), as it performed reasonably well in terms of their 
correlation coefficient and also offered a collection of 
terms for improved characterization of the target maps. 
Critically, we advise filtering out terms that do not pro-
vide functional information, given that anatomical, clin-
ical, or non-specific labels only add noise to the 
classification.

In the current study, we chose to report only the top 
three words for topics to simplify the comparisons, given 
that those three words accounted for most of the proba-
bility of all the words within a topic. However, we note 
that researchers are encouraged to include additional 
words from a topic if that will improve the characteriza-
tion of the target map.

4.3.  Meta-analytic database

Last but not least, the database used to train the models 
represents a key element of a meta-analytic decoding 
strategy, as the accuracy of the coordinate extraction 
and the heterogeneity of terms, combined with the extent 
of the corpus, will directly affect the performance of a 
decoder. As such, we showed that NS and NQ performed 
similarly regarding their correlation profile. We think the 
similarity is likely due to the resemblance between their 
corpora, comprising a similar number of overlapping 
documents. However, we observed that the vocabulary 
size may help improve a decoder’s information content 
and produce more functional terms. Therefore, we rec-
ommend using a large database with a large and rich 

vocabulary like NeuroQuery or a combined database that 
includes studies from Neurosynth and NeuroQuery.

4.4.  Decoding multidimensional gradients

Finally, we proposed a method for decoding lower-order 
gradient maps (e.g., second and third gradients), in which 
all the components were analyzed together in a high 
dimensional space. Importantly, we recommend against 
separately interpreting these lower-order gradients. 
These gradients still contain important information from 
the functional organization, accounting for approximately 
15% of the information from the original connectivity 
matrix. We demonstrated that the second gradient sepa-
rated DMN and the frontoparietal network aligned with 
previous work (Smallwood et  al., 2021). Similarly, the 
third gradient separated the sensorimotor and visual net-
works, also aligned with previous work (Margulies et al., 
2016). However, decoding these maps alone failed to 
reproduce the more precise functional organization 
established in the high-dimensional space. We conclude 
that this is primarily because the new segments for 
decoding were defined with limited information from the 
original connectivity matrix. Alternatively, we suggest 
using them with the principal gradient to improve the 
clustering of functional regions, as combined they all 
account for almost all the variance explained from the 
original connectivity matrix.

The results show that performing the clustering algo-
rithm on higher dimensions improves all cluster per
formance metrics tested. In particular, when including 
more than the first two gradients, we found better cluster 
solutions, given the high mean silhouette score, high vari-
ance ratio, and low cluster separation. The optimal clus-
tering solution was found for four clusters in 7D space. 
However, we used the four-cluster solution from 4D 
space to illustrate the decoding analysis, which showed 
a high NMI to 7D. Functional decoding of the four clus-
ters revealed the functional information of the first four 
components provided. Cluster 1 and 4 were associated 
with the DMN and the sensorimotor network, consistent 
with the two ends of the principal gradient (Katsumi et al., 
2023; Margulies et al., 2016). Cluster 2 was associated 
with the frontoparietal network, usually found in the third 
component (Katsumi et al., 2023; Smallwood et al., 2021). 
Finally, Cluster 3 was associated with the visual cortex, 
which is usually separated from the sensorimotor net-
work when including the second component (Katsumi 
et al., 2023; Margulies et al., 2016). Importantly, we found 
that the similarity in the explained variance of lower-order 
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gradients can yield a different ordering of the compo-
nents. The second and third gradients were switched 
compared to previous dimensionality reductions of the 
HPC S900 dense connectome. This ordering issue, how-
ever, can be addressed by performing the analysis in the 
high-dimensional space, as suggested in this work, 
where the ordering of the gradients is irrelevant.

We recognize that the number of components and 
clusters to consider in an analysis may depend on the 
application and the type of connectivity matrix from 
which the gradients are extracted. In this work, we used 
a group average thresholded connectivity matrix. How-
ever, researchers may use other connectivity matrices, 
including those at the subject level, from atypical partici-
pant groups or different development stages, as well as 
other matrices with negative or unthresholded values. As 
a main step, we suggest performing a similar multidimen-
sional segmentation for a set of different dimensions and 
number of clusters and determining the optimal solution 
for the particular case using clustering performance met-
rics such as silhouette, variance ratio, and cluster sepa-
ration scores.

4.5.  Derived products

The workflows and methods proposed in this work have 
been implemented in Gradec (Peraza et al., 2023), a new 
open-source Python package developed during the 
design of this project. Gradec includes different modu
les to perform segmentation/clustering, meta-analytic 
decoding, and visualization of the decoding results. 
Notably, the decoding algorithms implemented in the 
cortical surface are not limited to connectivity gradients. 
They can also be applied to cortical brain maps from dif-
ferent modalities, such as probability maps, statistical 
maps, and more complex modalities (e.g., inter-subject 
variability maps).

4.6.  Limitations

Several considerations may limit the present study. First, 
the cortical gradients were estimated on a group-average 
functional connectivity matrix. However, researchers may 
also estimate the gradients at the subject level. We pos-
tulate that our results will hold for subject-level gradients, 
given that most group-level gradients are replicable at 
the individual level (Katsumi et al., 2023). However, future 
work is needed to verify this assumption. Second, the 
group-level functional connectivity matrix from the HPC 
was thresholded at a value that resulted in 10% of edges. 

Thus, the result of the decomposition may be subject to 
a positive bias. Further analyses are needed to explore 
the segmentation and decoding result of gradients esti-
mated on unthresholded connectivity matrices. Third, we 
only tested the correlation decoder algorithm. Additional 
analyses are needed to determine if more advanced 
decoding strategies, such as the native method imple-
mented in the GC-LDA model or the machine-learning 
algorithm Neural Network on Dictionaries (NNoD) (Menuet 
et  al., 2022), are more appropriate to decode gradient 
maps. Correlation decoder models are limited by design, 
and although previous research has shown that the labels 
assigned to a meta-analytic map accurately reflect its 
cognitive state (Poldrack et al., 2012; Rubin et al., 2017; 
Yarkoni et  al., 2011), we may identify cases where the 
label does not correctly describe such maps. This result 
may be found more frequently among non-specific, clini-
cal, or anatomical labels. Although the maps associated 
with these labels can be filtered out, leaving only func-
tional meta-analytic maps, we cannot be sure all func-
tional maps are correctly assigned.

5.  CONCLUSIONS

In conclusion, we provide recommendations on best 
practices for gradient-based functional decoding of 
fMRI data. We found that a two-segment solution deter-
mined by a K-means segmentation approach and an 
LDA-based meta-analysis combined with the Neuro-
Query database was the optimal combination of meth-
ods for decoding the principal gradient of functional 
connectivity. We proposed a method for decoding 
lower-order gradient maps combined with the principal 
gradient in a high-dimensional space. This combination 
of approaches and our recommended visualization 
method for reporting meta-analytic decoding findings 
will enhance the overall interpretability of macroscale 
gradients in the fMRI community.

DATA AND CODE AVAILABILITY

This project relied on multiple open-source Python pack-
ages, including: BrainSpace (Vos de Wael et  al., 2020), 
Jupyter (Kluyver et al., 2016), mapalign (github.com/satra/
mapalign), Matplotlib (Hunter, 2007), Netneurotools (github.
com/netneurolab/netneurotools), Neuromaps (Markello 
et al., 2022), NiBabel (Brett et al., 2020), Nilearn (Abraham 
et al., 2014), NiMARE (Salo, Yarkoni, Nichols, Poline, Kent, 
et  al., 2022; RRID:SCR_017398), NumPy (van der Walt 
et  al., 2011), Pandas (McKinney, 2010), PtitPrince  

http://www.github.com/satra/mapalign
http://www.github.com/satra/mapalign
http://www.github.com/netneurolab/netneurotools
http://www.github.com/netneurolab/netneurotools
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(github.com/pog87/PtitPrince), PySurfer (Waskom et  al., 
2020), RainCloudPlots (Allen et  al., 2021), Scikit-learn 
(Pedregosa et al., 2011), SciPy (Virtanen et al., 2020), Sea-
born (Waskom et al., 2017), SurfPlot (Gale et al., 2021), and 
word_cloud (Mueller et al., 2018). We also used the HCP 
software Connectome Workbench (wb_command version 
1.5.0, (Marcus et al., 2011)). All code required to reproduce 
the analyses and figures in this paper is available on GitHub 
at https://github​.com​/NBCLab​/gradient​-decoding. High-
resolution figures are available through FigShare (https://
figshare.com/projects/Meta-analytic_decoding_of_the_
cortical_gradient_of_functional_connectivity/172347). The 
decoding and segmentation modules are available for 
future re-use here https://github​.com​/JulioAPeraza​/gradec 
(Peraza et al., 2023), which will be linked to NiMARE (https://
nimare​.readthedocs​.io​/en​/latest/) as a Python module for 
gradient meta-analytic decoding in the future. All data and 
resources that resulted from this paper (e.g., connectivity 
gradients and trained meta-analytic decoders) are openly 
disseminated and made available on the Open Science 
Framework (OSF) at https://osf​.io​/xzfrt, including the links 
to the GitHub repository, and figures.
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