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Abstract 

Purpose 

Attentional control theory (ACT) posits that elevated anxiety increases the probability of re-allocating 
cognitive resources needed to complete a task to processing anxiety-related stimuli. This process 
impairs processing efficiency and can lead to reduced performance effectiveness. Science, technology, 
engineering, and math (STEM) students frequently experience anxiety about their coursework, which 
can interfere with learning and performance and negatively impact student retention and graduation 
rates. The objective of this study was to extend the ACT framework to investigate the neurobiological 
associations between science and math anxiety and cognitive performance among 123 physics 
undergraduate students.  

Procedures 

Latent profile analysis (LPA) identified four profiles of science and math anxiety among STEM 
students, including two profiles that represented the majority of the sample (Low Science and Math 
Anxiety; 59.3% and High Math Anxiety; 21.9%) and two additional profiles that were not well 
represented (High Science and Math Anxiety; 6.5% and High Science Anxiety; 4.1%). Students 
underwent a functional magnetic resonance imaging (fMRI) session in which they performed two tasks 
involving physics cognition: the Force Concept Inventory (FCI) task and the Physics Knowledge (PK) 
task.  

Findings 

No significant differences were observed in FCI or PK task performance between High Math Anxiety 
and Low Science and Math Anxiety students. During the three phases of the FCI task, we found no 
significant brain connectivity differences during scenario and question presentation, yet we observed 
significant differences during answer selection within and between the dorsal attention network 
(DAN), ventral attention network (VAN), and default mode network (DMN). Further, we found 
significant group differences during the PK task were limited to the DAN, including DAN-VAN and 
within-DAN connectivity.  

Conclusions 

These results highlight the different cognitive processes required for physics conceptual reasoning 
compared to physics knowledge retrieval, provide new insight into the underlying brain dynamics 
associated with anxiety and physics cognition, and confirm the relevance of ACT theory for science and 
math anxiety. 

Keywords: science anxiety, math anxiety attentional control, attentional control theory (ACT), physics 
cognition, task-based connectivity, dorsal attention network (DAN), ventral attention network (VAN), 
default mode network (DMN), educational neuroscience  
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Introduction 

Improving student retention rates among science, technology, engineering, and math (STEM) 
university majors has been an enduring issue in higher education [1,2]. Only ~40% of university 
undergraduate students enrolled in STEM degree programs in the United States complete their degree 
[3], yet within the next 10-20 years a projected one million STEM-related jobs will need to be filled by 
qualified individuals [2]. These low STEM retention rates among U.S. students have prompted 
multiple research studies and programmatic initiatives dedicated to investigating and addressing the 
motivational, institutional, and cognitive factors that result in students abandoning STEM degree 
programs [4,5]. While findings suggest that STEM retention is a multifaceted problem, one notable 
psychosocial barrier that students commonly report facing when choosing whether or not to remain in 
their programs is STEM-related anxiety, which is defined as apprehension or fear towards STEM-
related activities [6]. STEM-related anxiety has been associated with underperformance in STEM 
courses [7,8], avoidance of effortful and effective study strategies [9], and is a significant contributing 
factor to withdrawal from introductory university STEM courses [7]. 

The association between STEM-related anxiety and diminished STEM performance may be explained 
by Attentional Control Theory (ACT), which posits that elevated anxiety impairs efficient functioning 
by reducing cognitive resources available for attentional focus, thereby compromising performance 
effectiveness [6,10,11,12]. ACT is an updated adaptation of the processing efficiency theory proposed 
by Eysenck and Calvo [13]. Processing efficiency theory distinguishes between performance 
effectiveness, which is defined as the quality of performance on a task, and processing efficiency, 
which moderates the relation between performance efficiency and the cognitive resources needed to 
attain a particular quality of performance. Processing efficiency theory also proposes that excessive 
rumination among highly anxious individuals encourages them to exert more cognitive effort to 
compensate for the deleterious effects of anxiety. Elevated use of finite cognitive resources is thought 
to lead to highly anxious individuals displaying reduced processing efficiency, which in turn worsens 
performance efficiency. Eysenck et al. [14] provided experimental evidence supporting this theory by 
demonstrating that groups of individuals with high and low anxiety performed similarly when a 
primary, visuospatial short-term memory task was coupled with a secondary, simple motor tapping 
task. However, when the secondary task was altered to require the use of the working memory system 
(e.g., counting backwards), highly anxious individuals performed worse on both the primary and 
secondary tasks, thus suggesting that elevated anxiety levels may diminish processing efficiency, 
thereby degrading performance efficiency [14].  

While processing efficiency theory broadly predicts that anxiety impairs executive functioning, which 
includes multiple cognitive processes ranging from attention shifting to updating working memory 
[11], ACT narrows the scope to posit that anxiety specifically impairs attentional control [10]. Within 
this framework, increased anxiety is thought to disrupt the equilibrium between two attentional 
systems: a goal-directed dorsal frontoparietal system, often referred to as the dorsal attention network 
(DAN) [10,15,16,17], which is engaged during task-relevant processes, and a stimulus-driven ventral 
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parietal system, often referred to as the ventral attention network (VAN) [10,15,16,17], which is 
involved in the processing of rewarding and aversive stimuli [11,18,19,20]. According to ACT, the 
detrimental effects of increased anxiety can be alleviated by increased activation of stimulus-driven 
attentional systems. However, as a consequence of the elevated activity of stimulus-driven attentional 
systems, fewer cognitive resources are dedicated to goal-directed attentional systems. In anxious 
individuals, enhanced activation of stimulus-driven attentional systems and decreases in goal-directed 
attentional systems are thought to occur in tandem, reflecting an aversive, elevated tendency to flight 
responses which lead to reduced performance and processing ability [10]. This mechanism may result 
in a feedback loop where elevated anxiety and reduced performance lead to lowered self-efficacy, 
leading to maintenance of disequilibrium between goal-directed and stimulus-driven attentional 
systems [6]. Furthermore, while ACT emphasizes both the independent and dependent functionalities 
of the DAN and VAN, evidence suggests that both engagement and disengagement of the default 
mode network (DMN) also influences attentional control and affects task performance [21]. The DMN 
is often categorized as the ‘task-negative’ network since it is often suppressed during cognitively 
demanding tasks and active during periods of self-referential processing and mind-wandering (i.e., in 
the absence of tasks) [22,23]. Prior work has demonstrated that interdependence within and between 
regions of the DMN, DAN, and VAN are associated with variability in task performance [24,25,26], 
particularly during sustained attention tasks [23,27]. Furthermore, DMN activity alterations among 
anxious individuals [28] suggests that both within-network activation of the DMN and its interactions 
with both the DAN and VAN are important to attentional control and relevant to ACT [21]. 

The objective of the present study was to extend the ACT framework to study the neurobiological 
associations between STEM-related anxiety, namely anxiety related to science and mathematics, and 
cognitive performance. Although the ACT framework has primarily been applied to the study of 
generalized anxiety, a recent meta-analysis demonstrated that math anxiety negatively impacts 
attentional control [29], confirming the relevance of ACT for STEM-related anxiety. Notably, previous 
research has often investigated science and math anxiety independently [7,30-36]. By incorporating 
both science and math anxiety into our research design, we aimed to provide a more comprehensive 
understanding of how these related, yet distinct, types of STEM anxiety are associated with task-based 
connectivity during physics cognition. Towards this end, we investigated science and math anxiety 
among undergraduate students enrolled in an introductory physics course. Students participated in a 
behavioral session in which they completed self-reports of science and math anxiety, followed by a 
functional magnetic resonance imaging (fMRI) session in which they performed two tasks involving 
physics cognition: the Force Concept Inventory task (FCI) and the Physics Knowledge (PK) task. Latent 
profile analysis (LPA) was used to identify groups of students with similar science and math anxiety 
profiles. Measures of between- and within-network connectivity were extracted from the DAN, VAN, 
and DMN networks during the FCI and PK tasks. Regression analyses were then conducted to 
determine task-based connectivity differences between science and math anxiety groups. We 
hypothesized that significant DAN- and VAN-related connectivity differences across science and math 
anxiety groups would be observed for both the FCI and PK tasks. However, since the FCI task involves 
sustained physics cognition, we further hypothesized that DMN-related differences would be observed 
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only for the FCI task and not the PK task. Lastly, we expected to observe significant differences in task 
performance (i.e., accuracy) across science and math anxiety groups, as predicted by ACT and 
processing efficiency theory. Together, these findings may inform knowledge on the behavioral and 
neurobiological associations between STEM-related anxiety and physics cognition among 
undergraduate STEM students. 

Material and Methods 

Participants 

The study sample included 123 healthy, right-handed undergraduate students (mean age = 19.8 ± 1.5, 
range = 18-26 years; 56 females). Students were enrolled in introductory, calculus-based physics 
courses at Florida International University (FIU) in Miami, Florida. This course is a prerequisite for 
numerous STEM degrees; students enrolled in the course come from a wide variety of STEM fields and 
must pass it to progress in their respective programs (e.g., physics, engineering, computer science, etc.). 
At enrollment, participants provided demographic information, such as their age, sex, ethnicity (i.e., 
Hispanic or non-Hispanic), household income, grade point average (GPA), and number of years 
enrolled as a student at FIU (i.e., freshman, sophomore, junior, or senior) (Table 1). Participants self-
reported that they were free from cognitive impairments, neurological and psychiatric conditions, and 
did not use psychotropic medications. 

Table 1. Participant Demographic Information. 
 

 N Percentage 

Gender 

  Male 67 54 

  Female 56 46 

Ethnicity 

  Hispanic 85 69 

  Non-Hispanic 38 31 

Household Income 

  < $15,000 26 21 

  $15,000 - $34,999 24 20 

  $35,000 - $49,999 16 13 

  $50,000 - $74,999 21 17 

  $75,000 - $99,999 18 15 

   >$100,000 18 15 

Years Enrolled 

  Freshman 11 10 
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  Sophomore 51 47 

  Junior 33 31 

  Senior 13 12 

 Mean (Std. Dev.) Range 

Age 19.8 (1.5) 18-26 

GPA 3.3 (0.5) 0.0-4.0 
 

Note. The “N” column represents the sample size of the group, 
and the “Percentage” column represents the percentage of 
participants in that group for each categorical variable (i.e., 
Gender, Ethnicity, Household Income, 
and Years Enrolled). 

Procedures 

At the beginning of the semester, participant recruitment began with research assistants visiting 
eligible classrooms and delivering a brief presentation, with the permission of the professor, informing 
students about the opportunity to voluntarily participate in this study. Enrolled participants completed 
a behavioral and fMRI session at the beginning of the course (i.e., pre-instruction), no later than the 
fourth week of instruction and prior to the first course exam. Behavioral sessions were conducted in an 
on-campus lab and students were asked to complete a battery of Qualtrics surveys. Imaging sessions 
were conducted off-campus and participants were provided with free parking and/or FIU-organized 
transportation to and from the MRI site. Written informed consent was obtained in accordance with 
FIU’s Institutional Review Board approval. Participants were compensated monetarily after both the 
behavioral and fMRI sessions. 

Science and Math Anxiety Measures 

Participants completed a series of self-report instruments during their behavioral sessions, including, 
but not limited to, assessments of their science and math anxiety. The Science Anxiety Questionnaire 
[31] consists of 22 items and had a Cronbach’s alpha of � = 0.86, which was calculated using the 
cronbach.alpha command from the ltm package available in R. The items asked students to 
indicate their level of discomfort with respect to a range of science-related subjects and activities (e.g., 
“Having your professor watch you perform an experiment in the lab.”) on a 5-point Likert scale, with “0” 
suggesting no apprehension and “4” indicating the highest level of discomfort. The Mathematics 
Anxiety Rating Scale [37] consists of 25 items and had a Cronbach’s alpha of  � = 0.96. The items asked 
students to indicate their level of discomfort with respect to a variety of mathematics related activities 
(e.g., “Being given a set of division problems to solve on paper.”) on a 5-point Likert scale, with “0” 
suggesting no apprehension and “4” indicating the highest level of discomfort. 
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Generalized Anxiety Measure 

In addition to science and math anxiety, an assessment was included to capture students’ self-report of 
general anxiety. The Beck Anxiety Inventory [38] is a Likert scale consisting of 21 items and had a 
Cronbach’s alpha of � = 0.94. The items asked students to indicate the severity of anxiety related 
symptoms that they experienced within the past month (e.g., “Fear of the worst happening”) on a 4-point 
Likert scale with “0” indicating that a symptom hadn’t been experienced in the past month and “3” 
indicating that the symptom had been severe in the past month. 

MRI Data Acquisition 

MRI data were acquired on a GE 3T Healthcare Discovery 750W MRI scanner at the University of 
Miami. Functional imaging data were acquired with an interleaved gradient-echo, echo planar imaging 
(EPI) sequence (TR/TE = 2000/30ms, flip angle = 75°, field of view (FOV) = 220x220mm, matrix size = 
64x64, voxels dimensions = 3.4×3.4×3.4mm, 42 axial oblique slices). T1-weighted structural data were 
also acquired using a 3D fast spoiled gradient recall brain volume (FSPGR BRAVO) sequence with 186 
contiguous sagittal slices (TI = 650ms, bandwidth = 25.0kHz, flip angle = 12°, FOV = 256x256mm, and 
slice thickness = 1.0mm). 

fMRI Tasks 

During the fMRI session, participants performed two different tasks: the Force Concept Inventory 
(FCI) task and the Physics Knowledge (PK) task. 

FCI Task 

Participants completed an in-scanner physics conceptual reasoning task that consisted of questions 
adapted from the reliable and widely used questionnaire known as the Force Concept Inventory (FCI) 
[39,40,41]. The experimental condition presented textual and illustrations of scenarios of objects at rest 
or in motion and students were asked to choose between a correct Newtonian solution and several 
reasonable but incorrect non-Newtonian alternatives. Students also completed a sequence of control 
questions that presented text and figure depictions of everyday physical scenarios that shared similar 
visual and linguistic characteristics to FCI items (e.g., containing words typically used in introductory 
Newtonian mechanics, as well as visual presentation and self-paced timing paralleling that of the FCI 
problems.) Control items, however, tested students on general reading comprehension and/or shape 
discrimination instead of physics content. Across both FCI and control conditions, questions were 
presented as blocks composed of three sequential view screens (i.e., “phases”), which consisted of:  

● Phase 1: Scenario: students viewed text and a figure describing a physical scenario (Fig. 1A), 
● Phase II: Question: students viewed a physics question about the scenario (Fig. 1B), and 
● Phase III: Answer: students responded with their answer out of four possible answer choices (Fig. 

1C). 
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Participants provided a self-paced button press to advance between phases and to provide their final 
answer. A fixation cross was shown after answer selection and before presentation of the next scenario. 
FCI and control blocks were of maximum duration 45 sec and were followed by a fixation cross of 
minimum duration 10 sec. The total duration for each FCI run was 5 min 44 sec; data were collected 
during three runs for a total duration of ~16 minutes. Control trials were not analyzed in the present 
study, but a description is provided above for completeness. In a previous publication, we 
demonstrated that our within-scanner version of the FCI task elicited widespread frontoparietal 
activation of regions of the DAN, VAN, and DMN, and that these activation patterns were elicited 
differently during each of the three phases [42]. 

PK Task  

Participants also completed the Physics Knowledge (PK) task. The PK task, adapted from a general 
knowledge task of semantic retrieval [43], was presented in a block-design and probed for brain 
activation associated with physics-based content knowledge. Students viewed physics questions (e.g., 
“What is the value of the acceleration due to gravity on Earth?”) and corresponding answer choices, such as 
“9.81 m/s2, 15 kg, 10 liters, and 11 ft/s2”) (Fig. 1D). A control condition was presented in which students 
viewed general knowledge questions (e.g., “What is the tallest mountain in the world?”) with 
corresponding answer choices, such as “Mount Rushmore, Mount Rainier, Mount Everest, or Mount 

Logan”). PK and control blocks were 28 seconds long and included four questions per block (6.5 sec per 
question followed by 0.5 sec of quick fixation). Three blocks of physics or general questions (six 
question blocks total) were alternated with 10 sec of fixation. The total duration of one run was 4 min 2 
sec; data were collected during two runs for a total duration of ~8 minutes. Similar to the FCI task, 
control trials for the PK task were not analyzed in the present study but are described for 
completeness. 
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Figure 1. Force Concept Inventory (FCI) and Physics Knowledge (PK) Tasks. Example items of the in-scanner 
tasks, including the three phases of the FCI task (A) Phase I: Scenario, (B) Phase II: Question, (C) Phase III: 
Answer and the (B) PK task. 

Analyses 

Latent Profile Analysis 

Latent profile analysis (LPA) is an analytic technique in which participants are assigned (with varying 
probabilities) into classes (i.e., subpopulations) based on their pattern of responses on a set of 
indicators. LPA was used in this study to group participants based on STEM-related anxiety profiles 
(i.e., based on similar self-report of science and math anxiety). LPA was performed in R using the 
tidyLPA package, as well as mclust, which uses the Expectation-Maximization algorithm, an 
approach for maximum likelihood estimation, for model-based clustering and classification [44,45]. 
Default parameters were used in which equal variances across classes and covariances were fixed to 0, 
which assumes conditional independence of the indicators and that correlation amongst indicators are 
explained exclusively by the latent classes, and a maximum of four possible classes were specified [46]. 
The compare_solutions command, available in tidyLPA, was used to determine the optimal 
number of classes by selecting the model with the lowest Bayesian Information Criterion (BIC), 
entropy, and bootstrapped likelihood ratio test (LRT). BIC is a model selection tool used to select one 
model from a finite set of possible models and the one with the smallest BIC is considered the “best” 
candidate [47]. Entropy, which can range from 0 to 1, is an indicator of classification precision and 
greater entropy suggests that the identified classes are better separated [46]. Additionally, models with 
entropy values greater than 0.8 suggest good distinction of the identified classes [48]. Bootstrapped 
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LRT produces a p-value for each subsequent model and is an indicator for the degree of fit 
improvement resulting from adding an additional profile. If the model contains a significant p-value 
when an additional profile is added, then that suggests the model provides a significant improvement 
in fit, relative to the previous model with k-1 profiles. Next, tidyLPA’s plot_profile command 
that specifies a 95% confidence interval was used to visualize model classification and assist with 
interpreting the grouping of the final model. Finally, for the purpose of contextualizing the profiles, we 
examined the extent to which the profiles differed with respect to age, sex, ethnicity, household 
income, number of years enrolled at FIU, GPA, generalized anxiety, and accuracy on the FCI and PK 
tasks (measured as the average number of correct responses). 

fMRI Preprocessing 

Each participant’s T1-weighted images were corrected for intensity non-uniformity with ANT’s 
N4BiasFieldCorrection tool [49,50]. Both anatomical and functional images were preprocessed 
using fMRIPrep (v.1.5.0rc1) [51,52]. The T1-weighted (T1w) reference, which was used throughout the 
pipeline, was generated after T1w images were corrected for intensity non-uniformity with ANT’s 
N4BiasFieldCorrection. Freesurfer’s mri_robust_template was used to generate a T1w 
reference, which was used throughout the entire pipeline [50,53]. Nipype’s implementation of ANT’s 
antsBrainExtraction workflow was used to skullstrip the T1w reference using OASIS30ANTs as 
the target template [54]. FSL’s FAST was used for brain tissue segmentation of the cerebrospinal fluid 
(CSF), white matter (WM), and gray matter (GM); brain surfaces were reconstructed using 
Freesurfer’s recon_all [55,56]. Preprocessing of functional images began with selecting a 
reference volume and generating a skullstripped version using a custom methodology of fMRIPrep. 
Freesurfer’s bbregister, which uses boundary-based registration, was used to coregister the 
T1w reference to the BOLD reference. The BOLD time series was then resampled onto surfaces of 
fsaverage5 space and resampled onto their original, native space by applying a single, composite 
transform to correct for head motion and susceptibility distortions. Additionally, the BOLD time series 
was high pass filtered, using a discrete cosine filter with a cutoff of 128s [57]. Several confounding time 
series were estimated as follows: for each functional run, motion outliers were set at a threshold of 0.5 
mm framewise displacement (FD) or 1.5 standardized DVARS. Nuisance signals from the CSF, WM, 
and whole brain masks were extracted by using a set of physiological regressors, which were extracted 
to allow for both temporal component-based noise correction (tCompCor) and anatomical component-
based noise correction (aCompCor) [58]. Additionally, the confound time series derived from head 
motion estimates were expanded to include its temporal derivatives and quadratic terms, resulting in a 
total of 24 head motion parameters (i.e., six base motion parameters, six temporal derivatives of six 
motion parameters, 12 quadratic terms of six motion parameters, and their six temporal derivatives). 
Estimates for the global, cerebrospinal fluid, and white matter signals were expanded to include their 
temporal derivatives and quadratic terms, resulting in a total of 12 signal-based parameters (i.e., three 
base signal parameters, three temporal derivatives of the three base parameters, the three quadratic 
terms of the base parameters, and the three quadratic terms of the temporal derivatives). Finally, all 24 
head motion confound estimates, three high pass filter estimates, and a variable number of aCompCor 



 10 

 
 

 

 

estimates (components that explain the top 50% of the variance) were outputted into a tsv file to be 
used for later denoising steps [59]. The complete preprocessing details can be found in the 
Supplemental Information.  

Parcellation and Task-Based Connectivity Analyses 

Additional data analysis was conducted in IDConn, a pipeline that bundles several commonly used 
neuroimaging software packages to create workflows examining functional brain connectivity [60]. 
Each participant’s preprocessed FCI and PK task-based fMRI data were parcellated according to a 
functionally derived, whole-brain parcellation. Network-level identification of the DAN, VAN, and 
DMN was carried out using the 17-network parcellation developed by Yeo et al. [61], using individual 
nodes within the networks as identified by Kong et al. [62] (Fig. 2). Confounding time series identified 
by fMRIPrep, along with the six head motion estimates from FSL’s MCFLIRT and outlier volumes 
(FD > 0.5 mm or 1.5 standardized DVARS) identified during preprocessing, were regressed out during 
analysis in IDConn. Each functional task time series was standardized, and the average per-network 
time series were extracted for each participant and task condition (averaged across runs), allowing 
assessment of between-network connectivity. Similarly, the average per-node time series was extracted 
for each participant and task condition (averaged across runs), allowing assessment of within-network 
connectivity. Importantly, given the relatively long duration of FCI trials (i.e., 45 sec), we separately 
extracted average network- and node-level time series for FCI Phase I (Scenario), Phase II (Question), 
and Phase III (Answer). Adjacency matrices were constructed per participant, per functional task using 
Nilearn (v. 0.3.1, http://nilearn.github.io/index.html), a Python (v. 2.7.13) module, built on 
scikit-learn, for the statistical analysis of neuroimaging data, by computing the pairwise Pearson’s 
correlations between each pair of regions, resulting in a 400x400 region-wise correlation matrix for each 
participant per condition per task [63,64]. From these matrices, we assessed the between-network 
connectivity for DAN-VAN, DAN-DMN, and VAN-DMN, as well as the within-network connectivity 
for the DAN, VAN, and DMN. Between- and within-network connectivity were assessed for each 
participant and for both the FCI and PK tasks. 

 

Figure 2. DAN, VAN, and DMN Network Parcellation. Each participant’s preprocessed fMRI data were 
parcellated using the 17-network Yeo parcellation [59] to identify the dorsal attention network (DAN; pink); 
ventral attention (VAN; yellow), and default mode network (DMN; blue). 
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Statistical Analyses 

Statistical modeling was conducted with the Lavaan package [65], which is available in R. Regression 
models were generated to evaluate between-network connectivity between DAN-VAN, DAN-DMN, 
and VAN-DMN during both the FCI and PK tasks. In addition, regression models were also generated 
to evaluate within-network connectivity for the DAN, VAN, and DMN during the FCI and PK tasks. 
The FCI models included three observed variables for each phase, including the average between- or 
within-network connectivity values during Phase I (Scenario), Phase II (Question), and Phase III 
(Answer). The PK models included a single observed variable, which was the average between- or 
within-network connectivity values for each of the PK or control conditions. For each model, the 
residual variance and intercept for the observed variable were specified. The main explanatory variable 
of interest was LPA-based class assignment. Age, sex, ethnicity, household income, number of years 
enrolled at FIU, GPA, and generalized anxiety were included as covariates.   

Results 

Latent Profile Analysis 

Table 1 presents the model fit indices for the four LPA models of science and math anxiety. The 4-
profile model had the lowest Bayesian Information Criteria (BIC = 615.33), which suggested that this 
model, relative to the other three, demonstrated the greatest improvement in fit. This interpretation 
was supported by the results of the bootstrapped LRT p-values, which showed that the differences in 
improvement of fit between the 1- and 2-profile models (p = 0.01), the 2- and 3-profile models (p = 0.01), 
and the 3- and 4-profile models (p = 0.01) were all significant. Furthermore, the 4-profile model had an 
entropy value greater than 0.8, which suggested a good separation of the identified classes [48]. Thus, 
the 4-profile model was selected based on BIC, entropy, bootstrapped LRT, and interpretability of 
classes. 

 

Table 2. Latent Profile Analysis Model Comparisons. 

# of Profiles BIC Entropy Bootstrapped LRT p-values 
1 715.36 1.00 - 
2 663.07 0.91 0.01 
3 629.27 0.89 0.01 
4 615.33 0.88 0.01 

Note. BIC = Bayesian Information Criteria,  
LRT = Lo-Mendell-Rubin Adjusted Likelihood Ratio Test. 
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Table 3 presents the mean z-scores for science and math anxiety across the four profiles. The tidyLPA 
get_estimates command was used to determine if the mean science and anxiety for each profile was 
significant based on a p-value < 0.05. The first profile represented 6.5% of the sample (n = 8) and was 
labeled as High Science and Math Anxiety as both science and math anxiety were significantly above 
zero. The second profile represented 59.3% of the sample (n = 73) and was labeled as Low Science and 
Math Anxiety as both science and math anxiety means were significantly below zero. The third profile 
represented 21.9% of the sample (n = 27) and was labeled as High Math Anxiety as only math anxiety 
was significantly above zero. The fourth profile represented 4.1% of the sample (n = 5) and was labeled 
as High Science Anxiety as only science anxiety was significantly above zero. 

To ensure clearly defined class membership, we restricted assignment to profiles to those whose 
posterior probabilities were 0.70 or higher. Of the 123 total participants, 100 of participants (81.3%) had 
posterior probabilities greater than 0.70. This included 73 Low Science and Math Anxiety and 27 High 
Math Anxiety participants. Given low sample sizes for the High Science and Math Anxiety and High 
Science Anxiety groups, these profiles were excluded from subsequent analysis. Thus, further analysis 
only focused on examining differences between the High Math Anxiety and Low Science and Math 
Anxiety groups. Fig. 3 illustrates the distributions for science and math anxiety across these two 
profiles (Fig. S1 shows the distributions across all four profiles).  

 

Table 3. Parameter Estimates for Science and Math Anxiety.  

Science Anxiety Math Anxiety 

Profile µ σ2 p-value µ σ2 p-value 
High Science and Math Anxiety (HSMA) 1.490 0.212 <0.001 2.220 0.300 <0.001 
Low Science and Math Anxiety (LSMA) -0.499 0.212 <0.001 -0.572 0.300 <0.001 

High Math Anxiety (HMA) 0.280 0.212 0.088 0.776 0.300 <0.001 
High Science Anxiety (HSA) 3.330 0.212 <0.001 0.016 0.300 0.970 

Note. Profile means and variances are represented by µ and σ2, respectively. 
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Figure 3. Science and Math Anxiety Scores for High Math Anxiety and Low Science and Math Anxiety Groups. 
A joint kernel density estimate plot showing the distributions of standardized science and math anxiety scores for 
High Math Anxiety (purple) and Low Science and Math Anxiety (green) students. 

Demographic Differences Across Profiles 

Next, we explored demographic differences across the High Math Anxiety and Low Science and Math 
Anxiety profiles. Results from chi-square tests of association indicated that we could not reject the null 
hypothesis of no difference on the basis of sex (�� = 3.361, df = 1, p = 0.067), ethnicity (0.0870, df = 1, p 
= 0.768), household income (��= 2.368, df = NA, p = 0.809), or number of years enrolled at FIU (��= 
4.501, df = NA, p = 0.219). Furthermore, results from t-tests indicated that we could not reject the null 
hypothesis of no difference in terms of average age (t = 1.511, df = 48.927, p = 0.137) or GPA (t = -1.132, 
df = 67.728, p = 0.262). Regarding FCI reaction time, results from t-tests indicated that the High Math 
Anxiety group had a slower mean reaction time (7,740.162 ms) than the Low Science and Math Anxiety 
group (7,107.696 ms) during Phase I (Scenario) (t = -1.780, df = 40.206, p = 0.041); however, the two 
groups did not differ in their reaction times during Phase II (Question) (t = - 0.348, df = 41.622, p = 
0.365) or Phase III (Answer) (t = 0.538, df = 43.440, p = 0.703). Importantly, and contrary to our 
hypotheses, we could not reject the null hypothesis on fMRI task performance between groups, with no 
significant differences in terms of FCI accuracy (t = 1.221, df = 60.613, p = 0.227), or PK accuracy (t = -
1.128, df = 49.695, p = 0.265). Lastly, High Math Anxiety students exhibited significantly increased 
generalized anxiety compared to Low Science and Math Anxiety students (t = 2.481, df = 31.732, p = 
0.0186). 
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fMRI Preprocessing 

Of the 123 participants in the study, datasets from two participants failed fMRIPrep preprocessing, 
leaving a total of 121 participants. Of those, only 102 participants completed the FCI and PK tasks 
during the MRI session. Among the 73 participants identified as belonging to the Low Science and 
Math Anxiety group, 60 were included in the task-based connectivity analyses. Similarly, among the 27 
participants in the High Math Anxiety group, 23 were included in the task-based connectivity analyses. 
Thus, FCI and PK data from a total of 83 participants were analyzed to assess differences in between- 
and with-in network connectivity.  

Profile Membership Effects: Between-Network Connectivity 

We examined whether there were significant differences between High Math Anxiety and Low Science 
and Math Anxiety students in terms of between-network connectivity for the DAN, VAN, and DMN. 
Table 4 presents the between-network connectivity differences during the FCI task. Results indicated 
no significant differences in connectivity during FCI Phase I (Scenario) or Phase II (Question). 
However, during Phase III (Answer), High Math Anxiety students exhibited significantly reduced 
between-network connectivity (i.e., DAN-VAN, VAN-DMN, and DAN-DMN) relative to Low Science 
and Math Anxiety students. Distributions of between-network connectivity values for Phase III of the 
FCI task are displayed in Fig. 4A. Student age, sex, ethnicity, household income, number of years 
enrolled at FIU, GPA, and generalized anxiety did not significantly explain variation in between-
network connectivity across all FCI phases.  

Table 4. Between-Network Connectivity during the Force Concept Inventory (FCI) Task.  

 Phase I (Scenario) Phase II (Question) Phase III (Answer) 

Coefficient �  z-value p-value �  z-value p-value �  z-value p-value 

DAN-VAN Connectivity 

Groupa -0.059 -0.976 0.329 -0.098 -1.633 0.102 -0.145 -2.574 0.010 

Age 0.021 1.036 0.300 -0.016 -0.810 0.418 -0.006 -0.330 0.741 
Sexb 0.060 1.074 0.283 0.030 0.542 0.588 0.089 1.711 0.087 
Ethnicityc -0.028 -0.432 0.665 0.049 0.768 0.442 -0.028 -0.460 0.646 
Income 0.021 1.345 0.178 0.015 1.010 0.312 0.015 1.031 0.303 
Years  -0.051 -1.397 0.163 -0.005 -0.142 0.887 -0.048 -1.375 0.169 
GPA -0.044 -0.760 0.447 -0.095 -1.654 0.098 -0.069 -1.274 0.203 
Gen. 
Anxiety 

-0.011 -0.345 0.730 -0.015 -0.480 0.631 0.013 0.443 0.658 

VAN-DMN Connectivity 

Groupa -0.070 -1.082 0.279 -0.117 -1.928 0.054 -0.140 -2.326 0.020 

Age 0.024 1.100 0.271 -0.017 -0.866 0.386 -0.006 -0.326 0.745 
Sexb 0.029 0.482 0.630 0.007 0.134 0.894 0.096 1.727 0.084 



 15 

 
 

 

 

Ethnicityc -0.007 -0.097 0.923 0.024 0.371 0.711 -0.044 -0.695 0.487 
Income 0.023 1.366 0.172 0.022 1.448 0.148 0.012 0.800 0.424 
Years  -0.042 -1.056 0.291 0.006 0.152 0.879 -0.038 -1.040 0.298 
GPA -0.053 -0.843 0.400 -0.104 -1.777 0.075 -0.070 -1.221 0.222 
Gen. 
Anxiety 

-0.006 -0.178 0.859 -0.004 -0.129 0.898 0.013 0.425 0.671 

DAN-DMN Connectivity 

Groupa -0.069 -1.059 0.290 -0.124 -1.953 0.051 -0.130 -2.159 0.031 

Age 0.021 0.988 0.323 -0.022 -1.022 0.307 -0.009 -0.455 0.649 
Sexb 0.044 0.740 0.459 0.029 0.499 0.618 0.091 1.635 0.102 
Ethnicityc -0.006 -0.083 0.933 0.010 0.145 0.885 -0.064 -0.999 0.318 
Income 0.022 1.357 0.175 0.027 1.678 0.093 0.016 1.061 0.289 
Years  -0.051 -1.295 0.195 0.006 0.155 0.877 -0.034 -0.916 0.360 
GPA -0.071 -1.145 0.252 -0.116 -1.909 0.056 -0.085 -1.469 0.142 
Gen. 
Anxiety 

-0.014 -0.406 0.685 -0.006 -0.199 0.842 0.012 0.385 0.700 

Note. Groupa, Sexb, and Ethnicityc are binary variables; thus, the reference categories for each variable are: a Low 
Science and Math Anxiety, b Male, c Hispanic, respectively. Significant results, defined as p > 0.05, are shown in 
bold. 

 

Table 5 presents the between-network connectivity differences during the PK task. Results indicated 
no significant differences in DMN-related between-network connectivity (i.e., VAN-DMN and DAN-
DMN). However, High Math Anxiety students exhibited significantly reduced DAN-VAN connectivity 
during the PK task relative to Low Science and Math Anxiety students. Distributions of between-
network connectivity values for the PK task are displayed in Fig. 4B. As with the FCI task, age, sex, 
ethnicity, household income, number of years enrolled at FIU, GPA, and generalized anxiety were not 
significant predictors for between-network connectivity for the PK task. 

Table 5. Between-Network Connectivity during Physics Knowledge (PK) Task. 

Coefficient � z-value p-value � z-value p-value � z-value p-value 

 DAN-VAN Connectivity VAN-DMN Connectivity DAN-DMN Connectivity 

Groupa -0.150 -2.005 0.045 -0.104 -1.347 0.178 -0.155 -1.923 0.054 
Age -0.007 -0.300 0.764 -0.007 -0.282 0.778 -0.001 -0.047 0.962 
Sexb -0.016 -0.235 0.814 0.002 0.032 0.975 0.019 0.252 0.801 
Ethnicityc 0.014 0.177 0.859 -0.002 -0.027 0.978 -0.002 -0.028 0.978 
Income -0.019 -0.993 0.321 -0.026 -1.324 0.185 -0.021 -1.007 0.314 
Years  0.023 0.505 0.613 0.023 0.483 0.629 0.014 0.276 0.783 
GPA -0.063 -0.883 0.377 -0.094 -1.256 0.209 -0.077 -0.999 0.318 
Gen. Anxiety -0.015 -0.393 0.694 -0.014 -0.362 0.718 -0.001 -0.013 0.989 
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Note. Groupa, Sexb, and Ethnicityc are binary variables; thus, the reference categories for each variable are: a Low 
Science and Math Anxiety, b Male, c Hispanic, respectively. Significant results, defined as p > 0.05, are shown in 
bold. 

 

 

Figure 4. Between-Network Connectivity Results. Distributions of between-network connectivity values during 
the A) Force Concept Inventory (FCI) Task Phase III and B) physics knowledge (PK) task among Low Science and 
Math Anxiety (LSMA; green) and High Math Anxiety (HMA; purple) students. Pirate plots with asterisks denote 
significant differences between groups. For each task, the observed between-network differences are illustrated 
with DAN, VAN, and DMN topographical visualization. Asterisks accompanied by a solid line denote significant 
differences between groups; dotted lines represent no significant group differences. 

 

Profile Membership Effects: Within-Network Connectivity 

Lastly, we examined whether there were significant differences between High Math Anxiety and Low 
Science and Math Anxiety students in terms of within-network connectivity for the DAN, VAN, and 
DMN. Table 6 presents the with-network connectivity differences during the FCI task. Results 
indicated no differences in connectivity between groups during FCI Phase I (Scenario) or Phase II 
(Question). However, during Phase III (Answer), High Math Anxiety students exhibited significantly 
reduced within-network connectivity (i.e., DAN, VAN, and DMN) relative to Low Science and Math 
Anxiety students. Distributions of within-network connectivity values for Phase III of the FCI task are 
displayed in Fig. 5A. Student age, sex, ethnicity, household income, number of years enrolled at FIU, 
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GPA, and generalized anxiety did not significantly explain variation in within-network connectivity 
across all FCI phases. 

 

 

Table 6. Within-Network Connectivity during Force Concept Inventory (FCI) Task. 

 Phase I (Scenario) Phase II (Question) Phase III (Answer) 

Coefficient � z-value p-value � z-value p-value � z-value p-value 

Within-DAN Connectivity 
Groupa -0.052 -0.893 0.372 -0.105 -1.818 0.069 -0.141 -2.525 0.012 
Age 0.018 0.947 0.344 -0.020 -1.060 0.289 -0.010 -0.536 0.592 
Sexb 0.046 0.846 0.398 0.008 0.156 0.876 0.089 1.719 0.086 
Ethnicityc -0.027 -0.426 0.670 0.059 0.958 0.338 -0.025 -0.417 0.676 
Income 0.017 1.137 0.256 0.020 1.333 0.182 0.014 0.988 0.323 
Years  -0.054 -1.510 0.131 0.004 0.112 0.911 -0.033 -0.973 0.330 
GPA -0.040 -0.704 0.482 -0.076 -1.370 0.171 -0.065 -1.210 0.226 
Gen. Anxiety -0.004 -0.138 0.891 0.001 0.029 0.977 0.020 0.698 0.485 

Within-VAN Connectivity 
Groupa -0.049 -0.843 0.399 -0.055 -0.957 0.339 -0.142 -2.540 0.011 
Age 0.019 0.974 0.330 -0.019 -1.022 0.307 -0.005 -0.263 0.792 
Sexb 0.046 0.849 0.396 0.019 0.356 0.722 0.090 1.742 0.082 
Ethnicityc -0.024 -0.385 0.700 0.058 0.950 0.342 -0.026 -0.431 0.666 
Income 0.015 1.001 0.317 0.012 0.819 0.413 0.012 0.862 0.389 
Years  -0.040 -1.105 0.269 0.011 0.309 0.758 -0.040 -1.168 0.243 
GPA -0.036 -0.646 0.518 -0.076 -1.390 0.164 -0.049 -0.920 0.357 
Gen. Anxiety -0.006 -0.214 0.830 -0.017 -0.593 0.553 0.014 0.476 0.634 

Within-DMN Connectivity 
Groupa -0.058 -1.009 0.313 -0.084 -1.527 0.127 -0.129 -2.398 0.016 
Age 0.022 1.122 0.262 -0.020 -1.091 0.275 0.000 0.008 0.994 
Sexb 0.005 0.095 0.924 -0.015 -0.294 0.769 0.086 1.735 0.083 
Ethnicityc -0.006 -0.099 0.921 0.069 1.174 0.240 -0.049 -0.851 0.395 
Income 0.027 1.873 0.061 0.019 1.353 0.176 0.015 1.126 0.260 
Years  -0.043 -1.207 0.227 -0.010 -0.304 0.761 -0.038 -1.151 0.250 
GPA -0.048 -0.868 0.385 -0.080 -1.515 0.130 -0.073 -1.422 0.155 
Gen. Anxiety -0.001 -0.048 0.962 -0.009 -0.329 0.742 0.004 0.157 0.875 

Note. Groupa, Sexb, and Ethnicityc are binary variables; thus, the reference categories for each variable are: a Low 
Science and Math Anxiety, b Male, c Hispanic, respectively. Significant results, defined as p > 0.05, are shown in 
bold. 
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Table 7 presents the within-network connectivity differences during the PK task. Results indicated no 
significant differences in within-network connectivity between groups for the VAN or DMN. However, 
High Math Anxiety students exhibited significantly reduced within-DAN connectivity during the PK 
task relative to Low Science and Math Anxiety students. Distributions of within-network connectivity 
values for the PK task are displayed in Fig. 5B. As with the FCI task, age, sex, ethnicity, household 
income, number of years enrolled at FIU, GPA, and generalized anxiety were not significant predictors 
for within-network connectivity for the PK task. 

 

Table 7. Within-Network Connectivity during Physics Knowledge (PK) Task. 

Coefficient � z-value p-value � z-value p-value � z-value p-value 

 DAN Within-Network 
Connectivity 

VAN Within-Network 
Connectivity 

DMN Within-Network 
Connectivity 

Groupa -0.165 -2.386 0.017 -0.122 -1.645 0.100 -0.086 -1.213 0.225 
Age -0.005 -0.200 0.841 -0.010 -0.386 0.699 -0.000 -0.006 0.995 
Sexb -0.030 -0.467 0.641 0.009 0.129 0.897 -0.005 -0.072 0.943 
Ethnicityc 0.046 0.630 0.529 0.001 0.017 0.986 0.004 0.060 0.952 
Income -0.019 -1.102 0.271 -0.021 -1.121 0.262 -0.029 -1.630 0.103 
Years  0.017 0.399 0.690 0.018 0.395 0.693 0.015 0.344 0.731 
GPA -0.062 -0.934 0.350 -0.067 -0.945 0.345 -0.086 -1.267 0.205 
Gen. Anxiety 0.004 -0.111 0.912 -0.029 -0.763 0.445 -0.002 -0.051 0.960 

Note. Groupa, Sexb, and Ethnicityc are binary variables; thus, the reference categories for each variable are: a Low 
Science and Math Anxiety, b Male, c Hispanic, respectively. Significant results, defined as p > 0.05, are shown in 
bold. 
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Figure 5. Within-Network Connectivity Results. Distributions of within-network connectivity values during the 
A) Force Concept Inventory (FCI) Task Phase III and B) physics knowledge (PK) task among Low Science and 
Math Anxiety (LSMA; green) and High Math Anxiety (HMA; purple) students. Pirate plots with asterisks denote 
significant differences between groups.  

Discussion 

The current study examined associations between science and math anxiety and task-based brain 
connectivity among university physics students. Previous research has focused on categorizing 
participants into high and low anxiety groups [35,36,66]. In contrast, an analysis that utilizes a person-
centered approach allows identification of patterns or profiles of characteristics within individuals 
rather than examining relations between variables at the group level [67]. A person-centered approach, 
such as latent profile analysis (LPA), emphasizes the importance of understanding individuals' unique 
characteristics when examining psychological constructs, such as anxiety. Our goal was to advance the 
existing literature by adopting a person-centered approach to better capture the complexity of science 
and math anxiety patterns among STEM students. This approach acknowledges that individuals may 
exhibit different patterns of science and math anxiety, and these patterns may have different 
implications for their functioning. In this way, we were able to examine how different unique patterns 
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of science and math anxiety are associated with differential neural connectivity during physics 
cognition.  

LPA conducted on science and math anxiety scores identified four student profiles; however only two 
profiles, which included High Math Anxiety and Low Science and Math Anxiety students, were 
examined due to low sample size. No significant differences in within- and between-network 
connectivity were observed between these two profiles in terms of student age, sex, household income, 
ethnicity, years of education, GPA, or physics task performance. Significant differences in within- and 
between-network connectivity were observed between profiles in terms of their generalized anxiety, 
with High Math Anxiety students exhibiting increased generalized anxiety compared to Low Science 
and Math Anxiety students. Group differences in between- and within-network connectivity for the 
DAN, VAN, and DMN were examined during the FCI and PK tasks, which measure physics-based 
conceptual reasoning and content knowledge, respectively. Results demonstrated no significant group 
differences in task-based connectivity during FCI Phase I (Scenario) and Phase II (Question). However, 
during FCI Phase III (Answer), High Math Anxiety students exhibited significantly reduced between-
network (i.e., DAN-VAN, VAN-DMN, and DAN-DMN) connectivity and within-network (i.e., DAN, 
VAN, and DMN) connectivity compared to Low Science and Math Anxiety students. Regarding the PK 
task, no significant group differences were observed in DMN-related between-network connectivity 
(i.e., VAN-DMN and DAN-DMN) or within-network connectivity for the VAN and DMN. However, 
during the PK task, High Math Anxiety students exhibited significantly reduced DAN-VAN and 
within-DAN connectivity compared to Low Science and Math Anxiety students. These outcomes 
provide insight into how between- and within-network connections (i.e., DAN, VAN, and DMN) are 
altered among those with elevated or reduced science or math anxiety. 

Physics Cognition During the FCI and PK Tasks 

The current study used two different fMRI tasks to disentangle attentional control processes to further 
understanding of the role of science and math anxiety on physics-based cognition. During both the FCI 
and the PK tasks, students responded to physics-based questions. A key difference between tasks is 
their relative duration; the PK task has a relatively short mean response time of (4.3 sec), while Phase 
III of the FCI has a much longer mean response time of 20.2 sec. Thus, while both tasks rely on 
engagement of the DAN for attentional maintenance and control, the FCI also engages the DMN, 
particularly during Phase III (Answer), likely due to mental exploration and sustained cognition 
needed to generate their answers [42]. We found significant and widespread group differences in task-
based connectivity within and between the DAN, VAN, and DMN during Phase III of the FCI, but no 
differences during Phases I or II, suggesting that attentional control processes are highly relevant and 
confirm the ACT framework during physics conceptual reasoning and answer selection, but not 
problem initiation or question presentation. These results are broadly consistent with findings from 
prior studies investigating the role of DMN-related processing associated with anxiety. It has 
previously been shown that individuals with elevated anxiety exhibit disrupted DMN-related 
functioning [28], have diffuse and unstructured network connectivity [68], and experience increased 
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levels of threat avoidance and rumination that may result in deficits in attentional control [69], 
compared to their less-anxious peers. Such results are consistent with ACT since they suggest that 
highly anxious individuals may utilize more cognitive resources to sustain DMN activity. 
Consequently, highly anxious individuals may have difficulty in suppressing interference caused by 
negative emotional information and may experience less mental flexibility in shifting their attention 
from an internal introspective state to external environmental stimuli, which may lead to performance 
deficits in tasks requiring high cognitive demands [28]. Furthermore, increased ruminators exhibit 
decreased DMN-related connectivity (i.e., both within-DMN and DAN-DMN) associated with 
distractor inhibition, emotional regulation, and attentional control [70,71,72]. In addition, DMN-related 
connectivity has been linked to distractor suppression [21]. Together, these findings may offer insight 
into our significant findings during FCI Phase III and DMN engagement during this task stage may 
potentially reflect increased rumination among students with elevated math anxiety. 

In contrast to the FCI results, we found no DMN-related connectivity group differences during the PK 
task. Significant group differences during the PK task were limited to the DAN, including DAN-VAN 
and within-DAN connectivity. These results highlight the different cognitive processes and systems at 
play during the PK task compared to the FCI task. While both the FCI and PK tasks require 
engagement of DMN regions for successful task execution and retrieval of physics-based content 
knowledge, our results indicate that it is the dynamics of the DAN that are especially salient in the 
context of performing the PK task among students with elevated math anxiety. The DAN is known to 
be integral for attention and is not considered a memory system per se [73], but prior work has [74] 
demonstrated that top-down attentional control in the DAN plays an important role for successful 
episodic retrieval when retrieval of specific perceptual information or details is required [71] or during 
remembrance of external stimuli [75]. During the PK task, attentional control is critically important as 
participants attend to visual cues intended to reactivate systems that encode the material [73] and 
trigger recollection of physics-based knowledge, drawing on working memory processes to retrieve 
information from long-term memory [76]. Such attentional control requires appropriate coordination 
between the DAN and VAN for attention maintenance and reorienting attention to salient stimuli, 
respectively [10,14,77].  

In addition, we note that while the FCI task is relatively novel in that it includes long interstimulus 
intervals, the PK task has much shorter interstimulus intervals that are characteristic of a standard 
fMRI task design. Despite these substantial differences in task design, significant differences in task-
based connectivity were observed between anxiety groups for both the FCI and PK tasks. This 
indicates that the FCI results are not simply due to the lengthy stimulus duration that allowed for 
heighted anxiety responses to develop. We observed significant differences in FCI reaction times 
between the High Math Anxiety and Low Science and Math Anxiety groups during Phase I (Scenario), 
but not Phase II (Question) or Phase III (Answer). Importantly, group differences in brain connectivity 
were observed only during the Phase III (Answer), during which no differences in reaction time were 
found. Taken together, this suggests that our results are not confounded by task design decisions, but 
instead reflect differential and meaningful cognitive processes at play. 
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Prior research has demonstrated that science and math anxiety are independent constructs [31,37,78-
80]; however, additional work has shown that they share commonalities and can impact each other 
[81,82]. Furthermore, the curriculum in introductory physics requires that students demonstrate an 
understanding of scientific concepts regarding classical physics principles, as well as an ability to solve 
mathematical equations using calculus or algebra to describe or make predictions about the behavior of 
physical systems. Thus, introductory physics students are actively engaged in both science- and math-
related activities throughout this semester-long course. Previous studies have shown that students in 
introductory STEM courses often experience science and/or math anxiety [7], which may negatively 
impact their course performance or their retention as a STEM major [7,82]. Although the FCI and PK 
tasks do not require explicit mathematical calculations, it is important to note that math anxiety has 
been shown to impact not only students' problem-solving abilities in physics, but also their self-
confidence within the domain [7]. Prior research has demonstrated that math anxiety can impede 
students' overall performance across multiple STEM fields, as a result of the significant 
interconnectedness between mathematical and scientific concepts [7]. Consequently, understanding the 
relations between math anxiety and physics cognition is essential to providing comprehensive support 
for students in STEM disciplines. 

Attentional Control Theory and Task Performance 

Previous work has shown that elevated DMN- and DAN-related connectivity is typically associated 
with reduced task performance during cognitively demanding tasks [24,26]. However, some studies 
have demonstrated that fluctuations in DMN activity can have beneficial effects on task performance. 
Konishi et al. [83] observed that activation in working memory-related regions was accompanied by 
notable temporary activation in the medial prefrontal cortex (mPFC) and posterior cingulate cortex 
(PCC), both core hubs of the DMN, for correct responses. Esterman et al. [84] discovered that 
fluctuations in DMN activity had both positive and negative effects on performance during a sustained 
attention task. Specifically, moderate DMN activity was associated with reduced response time 
variability and fewer errors, while conversely, extreme peaks in DMN engagement predicted lapses in 
sustained attention and preceded errors. Furthermore, stronger positive connections between the DMN 
and right inferior frontal gyrus enhanced the speed and accuracy in detecting task-relevant features, 
which is an important functional component of goal-directed tasks [25]. Positive correlations between 
the mPFC and PCC and the right anterior insula has been associated with performance deficits during 
sustained attention tasks [23,27]. Elevated within-network DMN connectivity is predictive of increased 
distractor suppression, which corresponds to better task performance; however, DMN 
hyperconnectivity to both the DAN and VAN is predictive of poorer distraction suppression, leading to 
worse task performance [21]. 

Given these prior results, it was somewhat surprising that the observed differences in DMN- and 
DAN-related connectivity were not linked to FCI and PK differences in task performance between 
High Math Anxiety and Low Science and Math Anxiety students. While some previous studies 
observed reduced task performance among participants with elevated anxiety [85,86,87], other studies 
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noted no associations between anxiety and task performance [11,88]. Importantly, the current lack of 
group differences in task performance remains consistent within the ACT framework [12]. The 
emphasis of ACT is on the potential impairment of efficient goal-directed attentional control 
processing due to the increased probability of cognitive resources being diverted from the task to 
process anxiety-related stimuli. ACT thus predicts that impaired processing efficiency may manifest as 
reduced task performance if sufficient auxiliary cognitive resources are not available to maintain 
performance effectiveness at the cost of impaired efficiency [12]. Consequently, anxious individuals 
may avoid decrements in task performance through compensatory mechanisms, such as increased 
cognitive effort and use of cognitive resources [12,89,90]. It is possible that anxious participants in this 
study did not experience elevated anxiety to the degree in which it had a noticeable effect on task 
performance [91]; it may be useful to consider adding cognitive load manipulations to future physics-
related fMRI tasks.  

Limitations 

This study is characterized by several limitations. First, this study is limited by its sample size, which 
may not have been large enough to i) assign sufficient participants to the two anxiety profiles that were 
not further examined, which included the High Science and Math Anxiety and High Science Anxiety 
profiles, and ii) detect additional anxiety-related student profiles [92]. Our study included 123 student 
participants and LPA yielded four profiles of students of imbalanced group sizes. As a result, two of 
those groups included less than 10.6% of the total sample and were excluded from the subsequent 
connectivity analyses due to power concerns. The present study thus focused only on group 
differences in task-based connectivity among High Math Anxiety and Low Science and Math Anxiety 
students. Future work should include a larger sample to ensure inclusion of High Anxiety and High 
Science Anxiety students in connectivity analyses. Second, some participants may have experienced 
elevated anxiety during the MRI scanning session, potentially confounding results. As this work 
focuses on the effects of anxiety on functional connectivity, future studies may include MRI-related 
anxiety as a predictor variable [93]. Third, significantly increased generalized anxiety was observed 
among High Math Anxiety compared to Low Science and Math Anxiety students. While the current 
study found significant science and math anxiety-related differences in DAN, VAN, and DMN 
connectivity after controlling for generalized anxiety, it is unknown to what extent science, math, and 
generalized anxiety may interact to disrupt functional brain connectivity. Finally, results from this 
study may not generalize to other groups of university students such as non-STEM students who may 
experience and adapt to science and math anxiety differently due to reduced exposure to STEM 
courses in their curriculum. Furthermore, since this study examined undergraduate physics students, 
results may not generalize to other physics cohorts or STEM content domains. 

Conclusions 

This study confirmed attentional control theory (ACT) in the context of science and math anxiety and 
demonstrated that undergraduate physics students with elevated math anxiety exhibited reduced task-
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based connectivity among brain networks that collaborate to maintain and modulate attentional 
control. Specifically, we observed significant and widespread science and math anxiety differences 
within and between the dorsal attention network (DAN), ventral attention network (VAN), and default 
mode network (DMN) during physics conceptual reasoning and answer selection (i.e., FCI task Phase 
III), but no differences during problem initiation or question presentation. These results suggest the 
importance of sustained cognition and DMN-related processing associated with math anxiety during 
the FCI task. Further, we found no significant DMN-related differences during the PK task, which 
measures physics-based content knowledge. Significant group differences during the PK task were 
limited to the DAN, including DAN-VAN and within-DAN connectivity. These results highlight the 
different cognitive processes that are required to complete the PK task compared to the FCI task. 
Finally, we observed no significant differences in FCI or PK task performance between High Math 
Anxiety and Low Science and Math Anxiety students. However, it is unclear if greater anxiety would 
lead to greater variability in task performance or if sustained anxiety experiences can lead to long-term 
performance differences. Future work is needed to explore the potential effects of STEM-related 
anxiety across STEM courses or learning experiences to determine if STEM exposure attenuates or 
exacerbates the task-based connectivity differences observed in the present study. Enhanced insight 
into the complex relations between STEM-related anxiety and STEM performance will likely yield 
more effective interventions to improve STEM retention and graduation rates. 
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