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SUMMARY

Neuroimaging studies showing the adverse effects of air pollution on neurode-
velopment have largely focused on smaller samples from limited geographical lo-
cations and have implemented univariant approaches to assess exposure and
brain macrostructure. Herein, we implement restriction spectrum imaging and
a multivariate approach to examine how one year of annual exposure to daily
fine particulate matter (PM2.5), daily nitrogen dioxide (NO2), and 8-h maximum
ozone (O3) at ages 9-10 years relates to subcortical graymattermicroarchitecture
in a geographically diverse subsample of children from the Adolescent Brain
Cognitive Development (ABCD) Study℠. Adjusting for confounders, we identi-
fied a latent variable representing 66% of the variance between one year of air
pollution and subcortical gray matter microarchitecture. PM2.5 was related to
greater isotropic intracellular diffusion in the thalamus, brainstem, and accum-
bens, which related to cognition and internalizing symptoms. These findings
may be indicative of previously identified air pollution-related risk for neuroin-
flammation and early neurodegenerative pathologies.

INTRODUCTION

Outdoor air pollution is a serious environmental health concern that contributes to respiratory and cardio-

vascular morbidity andmortality.1 However, an emerging literature also suggests that outdoor air pollution

can have harmful effects on the brain, including neurodevelopmental consequences as well as pathologies

characteristic of neurodegenerative diseases (e.g., Alzheimer’s and Parkinson diseases).2–4 Children are

thought to be especially vulnerable to these effects given their brains are continuing to grow and

develop.5–9 Moreover, despite reductions in air pollution levels in the U.S. over the past few decades,

adverse health effects are detected at low levels of exposure that fall well-below the U.S. Environmental

Protection Agency’s (EPA) annual standards.10–13

Particulate matter (PM) consists of chemical mixtures of solids and liquid droplets that are suspended in the

air, and is measured by the diameter of air particles. Outdoor ambient PM2.5 (i.e. particles that are smaller

than 2.5 mm) largely comes from the combustion of gasoline, oil, diesel fuel, coal or wood; while ambient

NO2 and O3 are gasses.14 The majority of NO2 comes from internal engine combustion from vehicles and

the burning of coal and natural gas, whereas ground-level O3 results from a chemical reaction of nitrogen

oxides and volatile organic compounds that occurs in the presence of heat and sunlight.14 Recent human

neuroimaging and behavioral studies suggest childhood outdoor air pollution exposure, including PM2.5

and its constituents, NO2, and O3 relate to poor neurodevelopmental outcomes.7,8,15 Specifically, greater

levels of outdoor air pollution during childhood have been associated with deficits in intelligence,2,16–18

memory,19 verbal functioning,20,21 and various executive functions (i.e. attention, working memory, inhibi-

tion)19,22–26 as well as subclinical mental health problems, including symptoms of anxiety, depression, de-

linquent behaviors, and attention deficit hyperactivity disorders (ADHD)27–31; albeit it is important to note

others have failed to find these associations.32–34 Utilizing Magnetic Resonance Imaging (MRI), childhood

ambient PM2.5 and NO2 exposure levels have also been linked to macrostructural brain differences in gray

matter surface area, volume, and cortical thickness in both cortical and subcortical regions,11,35–38 as well as
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microstructural properties of white matter pathways.10,38,39 One notable limitation of the studies above is

that since they rely on linear models that can only handle one exposure and its relationship with whole-brain

measures, or many exposures and their relationship with one region, we are unable to capture multivariate

relationships between air pollutants and brain measures. Multivariate neuroimaging approaches have the

potential to clarify some of these associations between common outdoor pollutants andmultiple brain out-

comes, ultimately providing a more complete in vivo assessment of the underlying neurobiology.

Beyond these initial MRI studies in children, it remains to be determined how exposure to outdoor ambient

air pollution in the U.S. may relate to potential changes to neural microarchitecture during childhood in

subcortical gray matter brain regions important for cognitive and emotional functioning. Animal exposure

studies strongly suggest this avenue of research is crucial as early life exposure to airborne particles,

including PM2.5 and smaller nano-sized particles, results in decreases in dendritic spine density and branch-

ing in the hippocampus,40,41 impaired neurogenesis,42 as well as impaired spatial cognition and more

depressive-like symptoms.40,42–44 Recent advancements in diffusion magnetic resonance imaging (dMRI)

acquisition and biophysical modeling techniques bring forth the opportunity to probe these emerging as-

sociations between ambient air pollution and gray matter microstructure using restriction spectrum imag-

ing (RSI). RSI applies a mathematical model to determine the proportion of the diffusion-weighted MRI

signal stemming from either restricted or hindered water diffusion, which reflects water within intracellular

or extracellular spaces, respectively45,46 (Figure 1A). The quantification of relative restricted diffusion (i.e.,

restricted normalized diffusion) can then be used tomake inferences as to the biological properties of brain

tissue, such as cellular and neurite density within gray matter regions. Specifically, the fraction of restricted

components is believed to be directly proportional to tissue cellularity; an interpretation which has recently

been histologically confirmed.46 Parsing the restricted component into isotropic and anisotropic (i.e.,

directional) diffusion can provide some insight into the organization of neurites in a region. Regions with

unidirectionally organized neurites (e.g., of packed bi-polar or pyramidal cells with long directional pro-

cesses) have high directional restricted diffusion (RND) and regions with larger or more cell bodies and/

or tangled neurites (e.g., more or larger glia, tangled interneurons, Purkinje cells, or multipolar neurons)

have high isotropic restricted diffusion (RNI). Given RSI’s potential for elucidating microstructure develop-

ment,47,48 exposure effects,10 as well as neuroinflammation and neurodegenerative pathologies49–52 that

have been previously noted in postmortem air pollution studies in children,2–4 its utility in assessing poten-

tial neurotoxic effects of PM2.5 and other pollutants in vivo has remained to be seen.

The goal of the current study was to examine how simultaneous exposure to current low levels of out-

door ambient air pollutants, including one-year average of daily fine particulate matter (PM2.5), daily ni-

trogen dioxide (NO2), and 8-h maximum ground-level ozone (O3) concentrations, relate to subcortical

gray matter microarchitecture as measured by RSI in 9-10-year-old children from the Adolescent Brain

Cognitive Development (ABCD) Study� (Table 1) To account for simultaneous exposure to PM2.5,

NO2, and O3, as well as our focus on gray matter microarchitecture of multiple subcortical regions of in-

terest, as measured by directional (RND) and isotropic (RNI) intracellular diffusion, we applied a partial

least squares correlation (PLSC) approach (Figure 1B–1D). This technique accommodates both multivar-

iate exposures and outcomes to identify latent information and features in local brain structures.53 More-

over, PLSC provides an advantage over univariate methods as it takes into account the multicollinearity

between environmental exposures, allowing us to model both independent and joint effects of each of

the three ambient air pollutants.54 With this data-driven, multivariate analysis technique, this study aims

to address whether subcortical gray matter microarchitecture is related to outdoor ambient air pollutant

exposure in children ages 9-10 years old. We also then performed post hoc exploratory regression an-

alyses using cognitive function from the NIH Toolbox and emotional problems reported by the caregiver

on the Child Behavioral Checklist to assess the potential functional relevance of gray matter microstruc-

ture patterns in the identified regions from PLSC analyses.
RESULTS

Descriptive statistics of gray matter microstructure across brain regions as well as outdoor air pollution

exposure are shown in Figure S1. Across the cohort, one-year annual daily PM2.5 was 7.62 (1.56) mg/m3, daily

NO2 was 18.7 (5.82) ppb, and 8-h maximumO3 was 41.6 (4.44) ppb. These values are significantly lower than

the EPA standards of 12 mg/m3 for PM2.5 (t(8795) = 263.33, p < 0.0001), 53 ppb for NO2 (t(8795) = 552.73,

p < 0.0001), and 70 ppb 8-h maximum of O3 (t(8795) = 599.90, p < 0.0001). In examining how PM2.5, NO2,

and O3 were associated with the microarchitecture of the 9 subcortical gray matter regions of interest, one
2 iScience 26, 106087, March 17, 2023



Figure 1. Air pollution and gray matter microarchitecture relationship explored in the current study using Restriction Spectrum Imaging (RSI) and

a Partial Least Squares Correlation (PLSC) framework

(1A) RSI identifies types of microstructural diffusion (1A.i), including restricted water molecules bounded by cell membranes representing intracellular

diffusion that is either directional (RND) or isotropic (RNI), hindered water molecules primarily within the extracellular space (HD), and free water molecules

that are neither hindered nor restricted in their movement. Around neurites, RNI and RND capture different aspects of gray matter microarchitecture in

regions with intertwined, multidirectional neurites (i.e., high RNI, Figure 1A.ii), as compared to regions with elongated, organized neurites (i.e., high RND,

Figure 1A.iii). (1B) PLSC relates shared information between two data blocks i.e. subcortical gray matter RSI measures (RNI; RND) and ambient air pollution

(PM2.5; NO2; O3) by using Singular Value Decomposition (SVD) to decompose the correlation matrix of the two blocks into three matrices (1C). These three

matrices include a square matrix of all the singular values and two latent variable matrices consisting of variable loadings for RSI brain measures and variable

loadings for air pollution measures. Columns of the latent variable matrices correspond to a latent dimension of the PLSC solution and are ordered by

decreasing the amount of cross-block covariance explained. (1D) The latent dimension and its associated two latent variables (one per data table). The latent

variables are derived from linear combinations of the original variables (i.e. air pollutants and subcortical gray matter RSI values). The contribution of these

original variables toward the latent variables is described by loadings.
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significant latent dimension was identified upon performing a permutation test, which explained 66% of the

variance that is common between the latent variables of ambient air pollution and subcortical gray matter

microarchitecture (Figures S2 and S3). Within this latent dimension we observed that, based on variable

loadings that met a bootstrap ratio threshold of 2.5, exposure to PM2.5 significantly and reliably shared

a positive association with RNI of both left and right hemisphere of the nucleus accumbens, the right thal-

amus, and the brainstem (Figure 2, Table S1). Observed associations with NO2 or O3 and any of the RND

brain measures of interest did not reach our a priori statistical significance threshold of p < 0.01 for this

latent dimension (Figure 2, Table S1). Robustness of the applied PLSC model was confirmed with the

10-fold CV process, in which the variance explained ranged from 64 to 74% (Table S2).

In follow-up analyses, we found that restricted diffusion in these PM2.5-related brain regions was signifi-

cantly related to both cognition and behavior (Tables 2 and S3–S7). Specifically, RNI in the right thalamus

was positively associated with all three metrics of cognition (i.e., general cognitive ability, executive func-

tioning, and learning and memory performance). Similarly, RNI within the brainstem was also found to

significantly relate to a child’s general cognitive ability. In terms of behavioral problems, RNI in the left nu-

cleus accumbens and the brainstem was positively related to internalizing problems, while RNI in the right

nucleus accumbens was negatively related to externalizing behavior. Interestingly, similar to the left
iScience 26, 106087, March 17, 2023 3



Table 1. Summary of participant characteristics and ambient air pollution exposure levels for the current study

Na %a

Total 8796

Mean Age, months (SD) 119 (7.52)

Sex

Male 4539 (51.6%)

Female 4257 (48.4%)

Race/Ethnicity

Non-Hispanic White 4781 (54.4%)

Non-Hispanic Black 1148 (13.1%)

Hispanic 1786 (20.3%)

Non-Hispanic Asian 172 (2.0%)

Otherb 909 (10.3%)

Handedness

Right 7,069 (80.4%)

Left 605 (6.9%)

Mixed 1122 (12.8%)

Household Income

<$50K 2234 (25.4%)

R$50K < $100K 2315 (26.3%)

R$100K 3,551 (40.4%)

Don’t Know or Refuse 696 (7.9%)

Parental Education

< HS Diploma 385 (4.4%)

HS Diploma/GED 753 (8.6%)

Bachelor 2,298 (26.1%)

Some College 2,239 (25.5%)

Post Graduate Degree 3,121 (35.5%)

Parental Employment

Full-time/Part-time 6203 (70.5%)

Unemployed 446 (5.1%)

Other 2147 (24.4%)

Sibling Relationship

Single 5964 (67.2%)

Sibling 1365 (15.4%)

Twin 1524 (17.2%)

Triplet 22 (0.2%)

MRI Manufacturer

Siemens 5,852 (66.5%)

GE 1,978 (22.5%)

Philips 966 (11.0%)

Air Pollutants, Concentration (SD)

Annual PM2.5 (mg/m3) 7.62 (1.56)

(Continued on next page)
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Table 1. Continued

Na %a

Annual NO2 (ppb) 18.70 (5.82)

Annual O3 (8-h max, ppb) 41.60 (4.44)

Data are expressed as the number (percentage) of participants unless otherwise indicated.

Abbreviations: GED, General Educational Development; HS, high school; MRI, magnetic resonance imaging.
aColumns are N and percent of sample, unless otherwise specified in the preceding rows.
b‘‘Other’’ race/ethnicity category includes participants who were parent-identified as American Indian/Native American,

Alaska Native, Native Hawaiian, Guamanian, Samoan, Other Pacific Islander, Asian Indian, Chinese, Filipino, Japanese,

Korean, Vietnamese, Other Asian not listed, or Other Race not listed.
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nucleus accumbens, RNI of the right nucleus accumbens positively related to internalizing problems, but

negatively related to externalizing problems; albeit these associations did not reach significance.

DISCUSSION

Here we apply a robust, multivariate data-driven approach and leverage a large, geographically diverse

cohort of 9-10-year-old children across the United States, to uncover that subcortical microarchitecture

is related to one-year annual ambient exposure levels (7.62 (1.56) mg/m3 for PM2.5, 18.7 (5.82) ppb for

NO2, and 41.6 (4.44) ppb for 8-h maximum O3) that are significantly lower than the current U.S. EPA stan-

dards. Specifically, we found that ambient exposure was related to subcortical gray matter microstructure,

with positive associations seen between PM2.5 and restricted isotropic diffusion (RNI) in regions of the ac-

cumbens, thalamus, and brainstem. Moreover, higher RNI in these identified brain areas were found to be

linked to better performance on cognitive tests as well as greater internalizing, but less externalizing, prob-

lems. Below we discuss how these findings suggest that current low-level exposures to ambient air pollu-

tion in the U.S. may influence gray matter microarchitecture in specific regions of the basal ganglia and the

brainstem, with potential implications for cognition and emotional functioning in children.

Previous child MRI studies have found that various brain features may be vulnerable to PM2.5 and its com-

ponents with various regional and hemispheric differences.2,10,11,16,35–39,55–60 Until recently, the majority of

these studies were limited by including participants from limited geographic locations and with relatively

small sample sizes. However, by applying novel hybrid ambient air pollution models and leveraging the

ABCD Study, our team has begun to decipher how current low-level ambient air pollution exposures are

linked to brain structure in today’s youth. In doing so, we have previously found that one year of annual

PM2.5 exposure largely below EPA standards is linked to hemisphere-specific differences in gray matter

macrostructure, including thickness, surface area, and volume,11 as well as widespread altered patterns

of microstructure, including RNI as measured by RSI, in key white matter tracts.10 The current research ex-

pands upon these initial studies by applying a multivariate analytic framework with three criteria co-pollut-

ants to reveal that one year of annual PM2.5 exposure is also most strongly associated with gray matter RNI

in the thalamus, accumbens, and brainstem. Interestingly, the current findings of differences in microarch-

itecture within these specific regions are in line with other studies showing the potential neurotoxic vulner-

ability of the basal ganglia and portions of the brainstem. Our previous studies in the ABCD cohort have

found that PM2.5 exposure at ages 9-10 years is related to larger volumes in the right thalamus and left nu-

cleus accumbens.11 Whereas PM2.5 components, such as polycyclic aromatic hydrocarbons (PAH) and cop-

per have been linked to smaller volumes in the basal ganglia, including the caudate and nucleus accum-

bens, as well as higher gray matter tissue concentrations within the caudate in children37,55,59 and

differences in thalamic volumes in older adults.61,62 Ecological studies have also shown differences in brain-

stem auditory evoked potentials between children from the more highly pollutedMexico City as compared

to less polluted cities in Mexico.16 Thus, our current findings expand upon this literature to further suggest

that in addition to differences in volumes and/or function, cellular microarchitecture in graymatter may also

be impacted by PM2.5 exposure in childhood in these brain regions.

As previously mentioned, RSI can be used to make inferences about potential differences in cellular micro-

structure within brain tissue regarding the size, shape, and orientation of intracellular diffusion compart-

ments.63 As such, increases in restricted normalized isotropic diffusion (RNI) using RSI may indicate differ-

ences in tissue morphology and composition, such as more or larger spherical structures, such as cell

bodies or supporting glial cells.47 Thus, it is possible the associations between RNI and air pollution
iScience 26, 106087, March 17, 2023 5



Figure 2. Bootstrap ratio bar plots of the variable loadings for the identified latent dimension

PM2.5 was positively associated with specific restricted diffusion RSI imaging variables of subcortical gray matter, including RNI of the left and right

accumbens, right thalamus, and the brainstem. Abbreviations: RNI, restricted isotropic diffusion; RND, restricted directional diffusion; lh, left hemisphere;

rh, right hemisphere. See also Table S1.
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exposure identified here may be emblematic of neuroinflammatory response and/or early markers of risk

for neurodegenerative diseases that have been detected in postmortem brains from children from highly

polluted urban cities.2–4 Postmortem studies of air pollution exposure in Mexico City have identified neu-

ropathologies in children’s white matter and cortex that are characteristic of neurodegenerative disorders,

including Alzheimer’s and Parkinson’s disease, including neuroinflammation, hyperphosphorylated tau,

accumulation of amyloid plaques and a-synuclein, and imbalances in gene expression, and less prio-

related proteins.2–4,64 Moreover, while the majority of these postmortem studies investigate ultramicro-

scopic aspects of exposure-related pathology that are far beyond the current spatial resolution of the

in vivo imaging sequences used here, increased RNI of the thalamus and brainstem has recently been

seen in adults affected by Parkinson disease as compared with healthy controls.49 Thus, these findings

further support our interpretation that increased RNI in thalamus and brainstem in children exposed to

higher concentrations to PM2.5 may relate to risk for such neuropathologies. The potential link between

previous histological findings with air pollution and the current increases of RNI in the nucleus accumbens

in the current study, however, are less straightforward. Exposure to concentrated ambient ultrafine parti-

cles has been associated with increased neuronal cell death in the nucleus accumbens,65 which one might

expect would lead to less, rather than greater, RNI. Yet, other differences in cell morphology or changes in

cell functioning might also occur and ultimately contribute to the association seen between PM2.5 and RNI

in the nucleus accumbens. For instance, early life exposure to diesel exhaust particles, a major component

of ambient particulate matter, is known to increase levels of dopamine, but decrease levels of serotonin, in

the nucleus accumbens.66 Importantly, beyond the nucleus accumbens, animal studies also suggest air

pollution exposure may alter the larger dopaminergic and serotonergic neurotransmitter systems, whose

primary centers are located in the midbrain and brainstem (which both were included in the segmentation

of the brainstem in the current study). Lastly, neuroinflammation is also characteristic of air pollution expo-

sure67,68 with notable differences in reactive astrocytes and microglial activation seen in brain autopsies

from children living in Mexico City.2,16 Interestingly, while RNI cannot differentiate between specific cell
6 iScience 26, 106087, March 17, 2023



Table 2. Associations between restricted isotropic diffusion (RNI) in PLSC-identified brain regions and cognitive and emotional outcomes

Restricted Isotropic Diffusion - RNI

Accumbens lh Accumbens rh Thalamus rh Brainstem

beta

Std

error CI beta

Std

error CI beta

Std

error CI beta

Std

error CI

Cognitive ability

General Cognitive

Ability

0.36 0.36 �0.34 – 1.07 0.12 0.36 �0.58 – 0.83 1.41*** 0.39 0.64–2.18 1.39** 0.43 0.54–2.24

Executive Function 0.57 0.42 �0.25 – 1.39 0.49 0.42 �0.32 – 1.31 1.46** 0.45 0.57–2.34 0.51 0.50 �0.47 – 1.50

Learning & Memory 0.40 0.37 �0.32 – 1.13 0.31 0.37 �0.41 – 1.03 1.42*** 0.40 0.64–2.21 0.72 0.45 �0.16 – 1.60

Emotional problemsa

Internalizing 9.14* 3.85 1.58–16.69 5.38 4.07 �2.60 – 13.36 2.11 5.00 �7.69 – 11.92 18.40*** 4.42 9.74–27.06

Externalizing �8.15 4.49 �16.95–0.65 �11.72** 3.94 �19.45–�3.99 �2.73 4.15 �10.85–5.40 4.42 4.87 �5.12 – 13.96

Estimates (beta), standard errors (Std. error), and 95% Confidence Intervals (CI) reported for each RSI variable of interest included in the model.

Abbreviations: lh, left hemisphere; rh, right hemisphere. See also Tables S3–S7.

* p < 0.05 **p < 0.01 ***p < 0.001.
aUtilized gamma distribution as link function in regression models to account for non-normal outcome distributions related to emotional problems.
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types (i.e. enlarged glia versus increased or larger neuronal cell bodies), a recent gene-wide association

study found that RNI is strongly associated with genes linked to astrocyte-mediated neuroinflammation,

characterized by the enlargement of activated glial cells69 and seen in children with suspected obesity-

related neuroinflammation.48 Taken together, the associated increases in RNI with greater exposure

seen here may also indicate exposure-related neuroinflammation; albeit further study is required to be

certain. Future work is needed that integrates microstructural imaging and histological approaches to

clarify the mechanisms underlying air pollution effects in these regions, and to what extent associations be-

tween air pollution and in vivo diffusion imaging capture potential risk for the development of neuroinflam-

mation and neurodegeneration pathologies in children as identified by ex vivo microscopy.

Given that little is known about associations between RSI, cognition, and behavior, we also examined

whether microarchitecture in identified regions of interest is related to a child’s cognitive performance

and emotional problems. Subcortical gray matter microarchitecture of the right thalamus was related to

improved cognitive functioning ability, whereas the nucleus accumbens microarchitecture was associated

with greater internalizing, but less externalizing, problems. Gray matter microarchitecture in the brainstem

was also associated with general cognitive performance, as well as internalizing behavior. While there is

little research on how restricted, intracellular isotropic diffusion in the thalamus, nucleus accumbens,

and brainstem may relate to cognitive and emotional outcomes, an existing body of brain-behavior liter-

ature suggests these relationships are congruent with the expected functions of these brain regions. For

example, while historically referenced as playing a passive role as the brain’s primary relay station, the thal-

amus is now thought to play a more active role in regulating information through its bidirectional connec-

tions (i.e., thalamocortical circuits) and informational exchange with the cortex.70,71 The term ‘‘cognitive

thalamus’’ references the central roles of various thalamic nuclei (e.g., anterior, mediodorsal) in functions

such as ,the direction of attentional resources to tasks at hand, important for various executive functions

including behavioral flexibility and task switching, as well as learning and memory.71 Alternatively, the nu-

cleus accumbens regulates emotional and reward-based stimuli responses by integrating information from

other cortical and limbic structures, such as the orbitofrontal cortex and amygdala.72–74 As such, MRI-based

macrostructural and activational differences in the nucleus accumbens have been noted in individuals

affected with a number of psychiatric disorders, including depression, anxiety, and attention deficit disor-

ders.75,76 The identified link between brainstem microarchitecture and behavioral outcomes is also inter-

esting given that the brainstem holds the aforementioned dopaminergic and serotonin neurotransmitter

circuits that project to cortical and subcortical regions to modulate various cognitive and mood-related

processes.77 Of course, these exploratory regression analyses also showed a few unexpected findings.

Bilateral RNI of the nucleus accumbens was related positively to internalizing, but negatively to external-

izing, problems; with stronger effects of internalizing in the right hemisphere and of externalizing in the
iScience 26, 106087, March 17, 2023 7
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left hemisphere. The lack of prior findings regarding hemispheric RNI differences and RNI-behavior asso-

ciations makes these relationships difficult to interpret, but does suggest a need for further investigation.

Moreover, brainstem RNI was associated with both greater cognitive performance and more internalizing

problems, suggesting the complex relationships between intelligence and internalizing behavior78,79 may

exist even at a neurobiological level. Finally, subnuclei of these structures themselves have complex asso-

ciations both in terms of structure and function.80,81 Thus, it is beyond the scope of the current study to

disentangle the various pathways by which these differential associations may emerge in relation to RNI

patterns in both the accumbens and brainstem. Rather, together, prior research and our findings suggest

that PM2.5-related patterns of gray matter microarchitecture (indexed by RNI) in these regions may be

important to consider in future work focused on understanding potential biological links between air pollu-

tion exposure and various cognitive and emotional behaviors.

Conclusion

This study is the first large, multisite U.S. study to examine associations between one-year annual PM2.5,

NO2, and O3 exposures, which were all well within the current EPA standards, and intracellular subcortical

gray matter microarchitecture in children. Associations were largely driven by PM2.5 and effects were most

prominent for microarchitecture in the thalamus, accumbens, and brainstem, with microarchitecture in

these regions found to be associated with a child’s cognitive and emotional functioning. The current find-

ings contribute to an emerging literature suggesting adverse health and developmental effects of outdoor

ambient air pollution may exist at lower levels of exposure seen across the U.S. Moreover, the current find-

ings may also provide additional support for the association between air pollution and emergence of risk

for neuroinflammation and neurodegenerative pathologies in children.

Limitations of the study

While the ABCD Study sought to recruit a sample that mirrored the US population by design, the ABCD

cohort is not a fully representative cohort of the U.S.82,83 As a whole, the ABCD cohort has under-represen-

tation of Asian, American Indian/Alaskan Native, and Native Hawaiian/Pacific Islander, as well as over-rep-

resentation of families with higher total household incomes (�64% with R$50,000) and those with highly

educated caregivers (�59% with bachelor degree or higher). Moreover, our final subsample of high-quality

exposure and neuroimaging data included a higher proportion of non-Hispanic whites and higher socio-

economic status as compared to the larger ABCD Study cohort. Thus, it is important to note that while

the current study captures how one-year exposure estimates for PM2.5, NO2, and O3 relate to gray matter

microstructure in a large and diverse sample, the results may not be generalizable to all children in the U.S.

For instance, the burden of health effects related to outdoor air pollution exposure is not ubiquitous. In-

dividuals who are poorer, have completed fewer years of education, and are from historically minoritized

communities are exposed to higher levels of pollution within the U.S.,84,85 and these groups may be more

susceptible to air pollution-related health threats because of compounded effects of disadvantage (i.e.

psychosocial stress, access to resources, proximity to industrial or roadway emission sources, and so

forth).86,87 Additional studies are needed to assess the current findings within these populations underrep-

resented in the ABCD cohort. Another limitation is that the ABCD study currently lacks air pollution expo-

sure beyond the one-year annual estimates that correspond with the 9-10-year age period for participants.

While the current findings build upon previous studies showing one year of exposure is associated with

brain outcomes in late childhood in both the ABCD study10,11 and BREATHE cohorts,59,60,88 key questions

remain as to how exposures during earlier periods have unique and/or additive effects over time and to

what degree these may contribute to the current findings. The current cross-sectional study design also

limits the possibility of drawing causal inferences. Previously noted cytoarchitectonic differences both

within and between subcortical regions might confound estimates of restricted isotropic and directional

diffusion. While histological methods support the assignment of RNI to larger/more cell bodies and of

RND to greater neurite organization/density, the resolution of diffusion-weightedMRI scans and the spatial

scale of cell bodies, axons, and dendrites lends some uncertainty about the contribution of neurite orga-

nization and disorganization to RND and RNI, respectively. This matter is compounded by averaging across

all voxels of large and cytoarchitectonically diverse regions, as is necessary for human MRI research. Future

work may consider RNI and RND on a finer-grained, voxel-level to interrogate the consistency and sources

of patterns identified here and integrate histological and imaging methods in animal models to comple-

ment this type of research. Furthermore, while PLSC analysis is useful for identifying patterns between mul-

tiple types of variables, further work is needed to investigate possible interactive effects between these

pollutant exposures and how they impact neural structure and function.
8 iScience 26, 106087, March 17, 2023
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Osornio-Vargas, Á.R. (2020). Air pollution
and children’s respiratory health: a scoping
review of socioeconomic status as an effect
modifier. Int. J. Publ. Health 65, 649–660.
https://doi.org/10.1007/s00038-020-
01378-3.

88. Alemany, S., Vilor-Tejedor, N., Garcı́a-
Esteban, R., Bustamante, M., Dadvand, P.,
Esnaola, M., Mortamais, M., Forns, J., van
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Software and algorithms
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PLSC Analysis Script This paper https://doi.org/10.6084/
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Regression Analysis This Paper https://doi.org/10.6084/
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https://doi.org/10.6084/

m9.figshare.21861894
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Megan Herting (herting@usc.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Develop-

ment (ABCD) Study (https://abcdstudy.org), held in the NIMHData Archive (NDA). The ABCD Study data

used in this report came from https://doi.org/10.15154/1523041.

d All original code is deposited at figshare.com and is now publicly available. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study population

Data for the analysis were acquired from the larger ongoing ABCD Study� (NDA 4.0 data release 2021),

which enrolled over 11,877 9- and 10-year-old participants across the USA from 2016-2018.91–93 The

ABCD Study� comprises of 21 diverse study sites and implements an identical protocol for recruitment

and neuroimaging of all participants.91,94–99 Study sites obtained approval from their local Institutional Re-

view Board (IRB). Centralized (IRB) approval was obtained from the University of California, San Diego.Writ-

ten informed consent was provided by each parent or caregiver; each child provided verbal assent. All

ethical regulations were complied with during data collection and analysis. Primary inclusion criteria for

participants were age (9.0 to 10.99 years) and fluency in English. Exclusionary criteria were MRI
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contraindications; history of significant traumatic brain injury or major neurological disorder (i.e. seizure

disorder, cerebral palsy, or other conditions requiring neurological or medical care); non-correctable sen-

sory and/or motor impairments that preclude the youth’s ability to participate in study procedures; current

or persistent major Axis I psychiatric disorder (i.e. psychosis, bi-polar); current medication of antipsychotics

or mood stabilizers; current or history of and persistent severe learning disorder, mental retardation, or

pervasive developmental disorder or substance use disorder diagnosis and/or substance use disorder;

parent report of intellectual disability; prematurity, very low birth weight, or perinatal complications; and

knowledge at baseline of impending move to an area not within reasonable traveling distance to an

ABCD Study site. For the current analysis, we utilized baseline data and had the additional inclusion criteria

of having a valid primary residential address at baseline from the 21 study sites, high quality diffusion

weighted imaging (i.e. exclusion of >2mm of head motion, images with artifacts, or abnormal clinical find-

ings as determined by radiologist review (see Hagler et al.97 for details), and complete cases of data,

including covariates, as required by PLSC (see Figure S4). This resulted in a final sample of 8796 partici-

pants. Children included in the final sample for analysis included a slightly higher proportion of non-His-

panic whites and those from higher socioeconomic status background as compared to the overall ABCD�
study cohort (Table S8).
METHOD DETAILS

Estimation of ambient air pollution exposure

A one-year annual ambient air pollution concentration for PM2.5, NO2, and O3 were assigned to primary

residential addresses of each child as described elsewhere.100 Briefly, daily estimates of PM2.5 (mg/m3),

daily estimates of NO2 (ppb), and daily 8-hour maximums of ground-level O3 (ppb) were derived at a

1-km2 resolution across the USA using hybrid ensemble spatiotemporal modeling, which utilize satellite-

based aerosol optical depth and other satellite measurements, land-use variables (i.e. land use coverage,

road density, elevation, normalized difference vegetation, etc.), weather data, and chemical transport

models,101–103 and averaged over the 2016 calendar year, corresponding with ABCD baseline data collec-

tion. The cross-validation of these models with EPAmonitored levels across the U.S. were found to perform

well, with R2 Root Mean Square Error (RMSE) of 0.89 for PM2.5 annual averages,
101 0.84 for NO2 annual av-

erages102 and 0.90 for daily 8-hour maximum O3.
103 The Pearson correlation coefficients between the

annual pollutant concentrations across all sites were: PM2.5 - NO2 = 0.20; PM2.5 - O3 = -0.16 ; NO2- O3 = 0.03.
Restriction spectrum imaging (RSI) acquisition and preprocessing

MRI Imaging methods and image acquisition performed in the ABCD Study� are harmonized across all 21

sites using 3 Tesla scanners (Siemens Prisma, General Electric 750, Philips).95 The imaging algorithm used

by RSI to capture different water diffusion lengths is an extension of the linear spherical deconvolution

model104–107 covering a range of diffusion length scales. Measures of interest derived from the RSI model

for the current study included directional (RND) and isotropic (RNI) intra-cellular diffusion (i.e., restricted

water bounded by membrane of cells).97 Each of these measures is normalized and defined as the

Euclidean norm (square root of the sum of squares) for the corresponding model coefficients divided by

the norm of all model coefficients. As such, these measures are unitless and range from 0 to 1 and the

square of each measure is equivalent to the signal fraction for their respective model components. RNI

is derived from the 0th order spherical harmonic coefficients of the restricted fraction and is the contribu-

tion of intracellular space to isotropic diffusion in a given voxel. RND is calculated from the 2nd order spher-

ical harmonic coefficients of the restricted fraction and reflects oriented diffusion.97 These RSI metrics were

then extracted for subcortical gray matter regions, which included left and right hemisphere of hippocam-

pus, thalamus, amygdala, caudate, putamen, pallidum, nucleus accumbens, cerebellum as well as brain-

stem as defined by Freesurfer v5.3 atlas-based subcortical segmentation (ASEG). All images underwent

quality control (QC) and rigorous inspection by trained technicians at the central ABCD Data Analysis,

Informatics, and Resource Center (DAIRC).97 Only high-quality imaging data were used for the current

study (see Figure S4 for details).
NIH toolbox

Children completed the cognitive battery from the NIH Toolbox98 at baseline which was comprised of ten

cognitive measures, including: Picture Vocabulary Test, Oral Reading Recognition Test, Flanker Task, List

Sorting working Memory Test, Dimensional Change Card Sort, Pattern Comparison Processing Speed

Test, and the Picture Sequence Memory Test, The Little Man Task, Matrix Reasoning Test, Rey Auditory
16 iScience 26, 106087, March 17, 2023
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Verbal Learning Test, and the Cash Choice Task.98 All tests were administered using an iPad with one-on-

one monitoring by a research assistant. As previously published, Bayesian Probabilistic Principal Compo-

nents Analysis along with varimax rotation was implemented to obtain the principal components of the

ABCD Baseline Cognitive Battery. The three derived PCA factor scores, known as general cognitive ability,

executive function, and learning/memory, for each participant were included in the analysis.108
Child behavior checklist (CBCL)

Caregivers reported on children’s problem behaviors using a 3-point scale with the code of 0 if the itemwas

not true, 1 if the item was sometimes true, and 2 if the item was often true. Internalizing and Externalizing

subscales were utilized in this analysis. Internalizing and Externalizing CBCL outcomes were analyzed using

t-scores corrected for age and sex.109
Covariates/confounders

Potential confounders were decided based on prior knowledge.110 The set of covariates which may predict

subcortical gray matter development and exposure to ambient air pollutants were identified using a

Directed Acyclic Graph (DAG) approach111 (see details in Figure S5). Specifically, disparity in air pollution

exposures is observed across multiple domains including an individual’s socioeconomic status, race and

ethnicity, and alongside neighborhood differences in crime rates.84,112–114 As previously reported,11 the

distribution of one-year annual PM2.5 exposures are associated with both demographic and social covari-

ates in the ABCD sample. Specifically, our analyses adjusted for child’s age and sex at birth, race and

ethnicity, highest household education, total combined family income, parental employment status,

perceived neighborhood safety, child’s handedness, MRI imaging manufacture, motion during the diffu-

sion MRI sequence, and ABCD Study site.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were conducted in R (version 4.1.2). Partial Least Squares Correlation (PLSC) was

used to relate information and identify reliable patterns between air pollution exposures and microarchi-

tectural features of subcortical gray matter regions. PLSC is a multivariate analysis technique that allows for

the comparison of two multidimensional data blocks with possible cross-correlated features (formal

expression of PLSC can be found in the supplemental methods). Reliable patterns between these data

blocks, termed latent dimensions, are revealed by using partial least squares to compute the best fit cor-

relation between the two data blocks and by also constraining solutions to the covariance structure that is

attributable to the relationship between the two blocks of variables.53,115 That is, PLSC establishes whether

there is a relationship between two datasets by maximizing the covariance between the datasets and iden-

tifies the sets of measures that best model this relationship. PLSC requires complete case data in order to

perform the underlying statistical procedures. Thus, 80 participants with missing data were removed using

listwise deletion in order to obtain complete case data for PLSC analysis. PLSC analysis was performed us-

ing the ‘TExposition’ and ‘TInPosition’ packages89 followed by the validation procedure of bootstrap

executed with the Boot4PLSC() function in package ‘data4PCCAR’.116 Cross validation was performed us-

ing R package ‘Caret’.117

Prior to running PLSC, primary exposure and outcome variables were residualized, then mean-centered

and normalized (to standard deviation of 1), to remove the influence of sociodemographic, scanner-related

and confounding influences (see section: covariates/confounders for details). For each data block (brain

variables and exposure variables), the residualized values were arranged into a matrix with each participant

as a row, and each exposure or brain outcome as a column. Using Singular Value Decomposition (SVD), the

PLSC analysis decomposed the correlation between the two data blocks into three matrices: a matrix

describing variable loadings for RSI brain measures, a matrix describing variable loadings for air pollution

measures and a square matrix of all the singular values. Each latent dimension consists of a latent variable

pair (one column per data block), which are derived from linear combinations of the original variables (i.e.,

the variables measuring air pollution exposure and microstructural features of subcortical gray matter

regions). Furthermore, variable loadings, also referred to as saliences, describe the contribution of the

original variables towards the latent variables while the singular values explain the correlation expressed

by the latent variable pairs. The percentage of variance explained by the latent dimension relative to other

latent dimensions is obtained by the ratio of squared singular values of that latent dimension divided by the

sum of singular values of all latent dimensions multiplied by 100.
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Because the SVD procedure of our PLSC analysis gives a fixed number of solutions, we used permutation

and bootstrapping computations to derive statistical tests for our PLSC.53,115,118 To assess statistical signif-

icance of the global model and each latent dimension, we performed a permutation test119 using 10,000

permutation samples without replacement in which the order of conditions was reassigned for each obser-

vation. Exact probabilities were then computed as the number of times the permuted singular values

exceed the observed singular values. Based on permutations tests and the percentage of variance ex-

plained by the latent dimensions, we determined one latent dimensions was important for interpreting

our results (Figures S2 and S5). To determine the significance of the specific variable loadings, we

computed standard error estimates using a bootstrap procedure with 10,000 samples. We then derived

a confidence bootstrap ratio by dividing themean of the bootstrapped distribution of a variable by its stan-

dard deviation.120 Bootstrap ratios are approximately equivalent to a z-score, and thus we considered load-

ings with bootstrap ratios that were greater than 2.5 (corresponding to p < 0.01) as reliable and significant.

As an additional analysis of the robustness of our PLSCmodel, we performed a 10-fold cross-validation (CV)

procedure, which is described in full details in supplemental methods.

Lastly, since RSI is a novel neuroimaging biomarker with little known about potential functional implica-

tions, we explored whether gray matter microarchitecture in identified regions may relate to cognition

and behavior. Specifically, linear mixed effect models were implemented to determine whether RSI diffu-

sion variables of the identified subcortical gray matter regions of interest associate with neurocognitive

function or behavioral problems, while adjusting for all identified confounding and precision covariates,

including random effects to account for the structure of the sample including study site and family

relationship.
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