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SUMMARY

Coordinate-based meta-analysis combines evidence from a collection of neuroimaging studies to estimate
brain activation. In such analyses, a key practical challenge is to find a computationally efficient approach
with good statistical interpretability to model the locations of activation foci. In this article, we propose
a generative coordinate-based meta-regression (CBMR) framework to approximate a smooth activation
intensity function and investigate the effect of study-level covariates (e.g. year of publication, sample size).
We employ a spline parameterization to model the spatial structure of brain activation and consider four
stochastic models for modeling the random variation in foci. To examine the validity of CBMR, we estimate
brain activation on 20 meta-analytic datasets, conduct spatial homogeneity tests at the voxel level, and
compare the results to those generated by existing kernel-based and model-based approaches.

KEYWORDS: generalized linear models; meta-analysis; spatial statistics; statistical modeling.

1. INTRODUCTION

Functional neuroimaging includes a number of techniques to image brain activity, including
positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Starting
three decades ago, PET studies were used to compare brain activity between rest and experimental
conditions, producing maps of “activation,” images of statistics measuring the strength of the
experimental effect. Especially in the last two decades, the literature on fMRI activations has
grown rapidly, which motivates a need to integrate findings, establish consistency and explore
heterogeneity across independent but related studies. However in both PET and fMRI studies,
validity is challenged by common drawbacks such as small sample sizes, a high prevalence of false
positives (approximately 10 — 20% of reported foci in publications are false positives [Wager et al.
2007]), significant heterogeneity among studies and unreliable inference due to their diversity in
measurements and types of analysis (Samartsidis et al. 2017). Meta-analysis is an essential tool to
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address these limitations and improve statistical power by pooling evidence from multiple studies
and providing insight into consistent results. While there are also applications of neuroimaging
meta-analysis to resting-state fMRI and structural analysis using voxel-based morphometry, in this
work we focus on fMRI but note that our work applies to data from other types of studies.

Meta-analysis in neuroimaging research is classified into two categories: image-based meta-
analysis (IBMA) which uses the 3D statistical maps of original studies and coordinate-based meta-
analysis (CBMA) which uses the reported spatial coordinates of activation foci in standard MNI
or Talairach space. Ideally, only IBMA would be used, as there is substantial information loss by
only using activation foci as compared to full statistics maps, and further accuracy loss occurs
when deactivation foci are ignored (Salimi-Khorshidi et al. 2009). However, while it is now more
common to share entire statistical maps in published studies, historically, researchers typically
reported only the x,7,z coordinates of peak activation (local maxima) within each activation
region. While this data is sparse, with an average of fewer than 10 foci reported per study, there
are large-scale coordinate databases [e.g. BrainMap (Laird et al. 2005), Neurosynth (Yarkoni et al.
2011)] that index thousands of studies. Hence, CBMA remains the predominant approach for
neuroimaging meta-analysis.

To identify brain regions with consistent activation across studies, researchers have developed a
variety of CBMA methods, which are either kernel-based or model-based. Kernel-based CBMA
methods utilize spatial kernel functions to model the uncertainty around each reported focus.
In contrast, model-based CBMA methods employ nuanced statistical models with assumptions
about the underlying brain function. Among those kernel-based methods, activation likelihood
estimation (ALE, with a Gaussian kernel), multilevel kernel density analysis (MKDA, with a
uniform sphere) and signed differential mapping (SDM, with a Gaussian kernel scaled by effect size)
are commonly used (Turkeltaub et al. 2002; Wager et al. 2007; Eickhoff et al. 2012; Radua et al.
2012). None of the three methods is based on a formal statistical model, however, all are able to
obtain statistical inferences by referencing to a null hypothesis of total random arrangement of the
foci (Samartsidis et al. 2017). Voxels with significant P-values are considered regions of consistent
activation. Multiple testing corrected inferences are made by controlling the family-wise error
rate using the null maximum distribution (Westfall and Young 1993) or the false discovery rate
(FDR) (Benjamini-Hochberg (BH) procedure, Benjamini and Hochberg 1995). However, kernel-
based methods lack interpretability, generally do not allow group comparison, do not model the
spatial dependence of activation foci, nor can accommodate study-level covariates to conduct a
meta-regression (Samartsidis et al. 2019).

Bayesian model-based methods address these limitations, and are categorized into parametric
spatial point process models (Kang et al. 2011; Montagna et al. 2018; Samartsidis et al. 2019) and
non-parametric Bayesian models (Yue et al. 2012; Kang et al. 2014). They use explicit genera-
tive models for the data with testable assumptions. Although they generally provide advances
in interpretability and accuracy over kernel-based methods, they are computationally intensive
approaches and generally require parallel computing on GPUs (Samartsidis et al. 2019), and only
some approaches can conduct meta-regression to estimate the effect of study-level covariates.
Further, it can be more challenging for practitioners to interpret the spatial posterior intensity
functions and utilize spatial Bayesian models in practice.

In this work, we propose classical frequentist models that explicitly account for the spatial
structure of the distribution of activation foci. Specifically, we develop a spatial model that takes
the form of a generalized linear model (GLM), where we make use of a spline parameterization
to induce a smooth response and model the entire image jointly; we allow for image-wise study-
level regressors and consider different stochastic models to find the most accurate but parsimonious
fit. Although Poisson is the classic distribution for describing independent foci counts, we have
previously found evidence of over-dispersion (Samartsidis et al. 2020), and thus we further explore
a Negative Binomial model, a Clustered Negative Binomial model and a Quasi-Poisson model to
allow excess variation in counts data.
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Our work builds on the existing methods for CBMA, while introducing key innovations. From
the Bayesian work, we adopt the concept of explicit spatial models; from the kernel methods, we
incorporate the idea of fixing the degree of spatial smoothness. The contribution of this meta-
regression model is both methodological and practical—it provides a generative regression model
that estimates a smooth intensity function and can incorporate study-level regressors. Meanwhile,
using a crucial memory-saving model factorization, it also offers a computationally efficient al-
ternative to existing Bayesian spatial regression models and provides an accurate estimation of
the intensity function. While our method is suitable for any CBMA data, we are particularly
motivated by studies of cognition. Cognition encompasses various mental processes, including
perception, intelligence, problem solving, social interactions, and can be affected by substance
use. We demonstrate this meta-regression framework on previously published meta-analyses of 20
cognitive and psychological tasks, allowing generalized linear hypothesis testing on spatial effect,
as well as inference on the effect of study-level covariates.

In the remainder of this work, we present our proposed meta-regression framework, introduce
the model factorization and optimization procedures, as well as inferences on meta-regression
outcomes via statistical tests in Section 2. Then we explain the experiment settings in Section 3
and explore different variants of stochastic models on the 20 meta-analytic datasets. We describe
multiple goodness-of-fit statistics to identify the most accurate model, establish valid FPR control
via Monte Carlo simulation under the null hypothesis of spatial homogeneity, followed by a
comparison of homogeneity tests with kernel methods in Section 4. Finally, Section 5 summarizes
our findings and discusses potential extension of this meta-regression framework in the future.

2. METHODS

GLMs are described in terms of their stochastic and deterministic components. Our deterministic
model features a regression structure with a spatial component utilizing spline parameterization
and a study-level covariate component. For the stochastic model, we consider multiple models
motivated by CBMA data characteristics. We then propose a model factorization approach to make
our methods scalable, before outlining a general inference framework.

2.1. Deterministic model
2.1.1. Generic regression structure
Assume there are N voxels in each of M studies, and then our CBMA data at voxel j for study i is the
voxelwise count of foci Yjj, written as a N-vector Y; = [Yi1, Yip, - - -, Yin] T for study i. We generate a
spatial design matrix X (N x P) with P cubic B-spline bases (more details to follow in Section 2.1.2)
and construct a study-level covariates matrix Z (M x R) using R study-level covariates from each
of M studies. For the CBMA framework, the central object of interest is the voxelwise intensity
function for study i, which considers both effects of smooth spatial bases and study-level covariates.
In this setting, we concisely write the model for study i as

log(i) =log [E(Y))] =XB + (Ziy)1n (2.1)

where 8 (P x 1) and y (R X 1) are regression coefficients for spatial bases X and study-level
covariates Z, respectively, Z; is the ith row of study-level regressors Z, and 1y is a N-vector of 1’s;
the estimated intensity is u;; for studies i = 1, ..., M and voxels j = 1, .., N, written as the N-vector

Wi = [ty fizy -+ ;L,-N]T for study i. This model is identifiable as long as we ensure each covariate
variable is mean zero, letting X capture the overall mean. The GLM for all voxels in all M studies is
then

log [E(Y)] = (1M ® X)B + (Z® 1n)y (2.2)

where Y = [Y1,Ys,- -+, Y] | is a (M x N)-vector, containing voxelwise foci count for all of M
studies, and ® is the Kronecker product. Note that our GLM has millions of rows (MN) and
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Figure 1. Illustration of a 2D tensor product spline basis.

the spatial design matrix has billions of entries (MN X P). In consideration of implementation
complexity and memory requirement, we will propose a simplified reformulation of this GLM in
Section 2.3.

2.1.2. Spline parameterization

Previous work on spatial point process modeling of CBMA data has treated each study’s foci as a
realization of a doubly-stochastic Poisson process, also known as a Cox process. In some of that
work, the log intensity function is parameterized by superimposed Gaussian kernel basis functions
(Montagna et al. 2018), while in others, the log intensity is a Gaussian process (Samartsidis et al.
2019). Both the tensor product of cubic B-spline bases and the Gaussian kernel basis functions
are suitable for modeling spatial intensity. Their smoothness, stability and ability to provide local
support make them ideal spatial bases for CBMA applications. We choose tensor product splines for
this work but, in a small evaluation, found that these two approaches have comparable performance;
see Appendix S3.1 of the Supplementary Material.

A 1-dimensional cubic B-spline is a piece-wise polynomial of order 3, where pre-specified knots
determine the parameterization of basis functions where the polynomial sections join. For our 3D
lattice, assume there are v, voxels along the x direction, the coefficients of v, voxels evaluated at each
of n,, B-spline bases construct a coefficient matrix C,, (size v, X n,). Similarly, there exist another
two coefficient matrices Cy and C, (size vy X ny and v, X n,) along y and z direction. The whole
coefficient matrix C of 3-dimensional B-spline bases is constructed by taking the tensor product of
the three coefficient matrices (see Fig. 1 for a 2D illustration),

C=C:®CRC, (2.3)

The matrix of Cis (vxvyv;) X (ngnyn;), and is the basis for the entire 3D volume, while the analysis
is based on a brain mask of N voxels. The design matrix X is obtained from C after a three-step
process: First, rows corresponding to voxels outside the brain mask are removed; then, columns
are removed if they correspond to weakly supported B-spline bases (a B-spline basis is regarded as
“weakly supported” if its maximum value of coefficients evaluated at each voxel is below 0.1). Finally,
the rows are re-normalized (sum to 1) to preserve the “partition of unity” property of B-spline bases.

We define our cubic B-spline bases with equally spaced knots in «, y, and z dimensions, and thus
we parameterize the level of spatial smoothness by the knot spacing. Larger knots spacing, smaller
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basis, and greater smoothness; conversely, closer knots, larger basis, and greater ability to represent
fine details. Conceptually, more flexible parameterizations would allow arbitrary knots locations,
but with the consideration of minimizing computational complexity, we fix the design matrix X
based on pre-specified knots spacing and locations. We also provide practical recommendations
on parameter selection for knot configuration in Section S3.2 in the Supplementary Material.
While other spline applications use a dense array of knots and then control smoothness with a
roughness penalty, the computational and memory requirements of our spatial model demand that
we judiciously select the coarsest spline spacing consistent with our application.

2.2. Stochastic model

Different stochastic assumptions on the CBMA foci data determine the form of statistical likelihood
we use. We consider a set of four stochastic models for the distribution of foci counts at the
voxel level. All of our models take the form of GLMs, where inhomogeneous intensity at each
voxel is captured by the spline bases and any study-level covariate (as per Equation (2.2)). We fit
our model either by maximizing log-likelihood function iteratively via L-BFGS (Limited-memory
Broyden-Fletcher-Goldfarb-Shanno) algorithm (Shanno 1970) for likelihood-based models or
iteratively re-weighted least squares (IRLS) for Quasi-likelihood models. We now elaborate each of
these models in turn and discuss their strengths and limitations.

2.2.1. Poisson model

In practice, the count of foci Yj; (for studies i=1,--- ,M, voxels j=1,--- ,N) is only ever 0
or 1, which strictly indicates a Binomial model. However, inspired by previous success with the
Poisson point process, and the accuracy of the Poisson approximation for low-rate Binomial data
(Eisenberg et al. 1966), we consider a Poisson model.

If foci arise from a realization of a (continuous) inhomogeneous Poisson process, the (discrete)
voxel-wise counts will be independently distributed as Poisson random variables, with a rate equal
to the integral of the (true, unobserved, continuous) intensity function over each voxel. As the sum
of multiple independent Poisson random variables is also Poisson, this also gives rise to a practical
consequence: it is equivalent to either model the set of M study-level counts or the summed counts
at each voxel. Following the deterministic structure outlined in Equation (2.1), the intensity for
voxel j in study i is

E[Yy] =

- (24)
log(iy) =mij =x; B+ Ziy

where Yj; ~ Poisson(u;), x]—r is the jth row of spatial design matrix X(N x P), and B is the
regression coeflicient of spline bases. The data vector Y has a length-(MN), which is impractical to
represent explicitly. Under the assumption of independence of counts across studies, the likelihood
function is exactly the same if we model the voxel-wise total foci count over studies instead (more
details to follow in S1.1 in the Supplementary Material), which gives rise to the modified Poisson

M
model on summed data at voxel j over all studies, Y, ; = ) ° Yy,
i=1

E[Y.,j] = M.j»

M M M
= = exp (5 B+ 2y ) =ep ) [ D exp(Ziy)
i=1 i=1

i=1

(2.5)
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M
where (1, ; = 4jj is the expected sum of intensity at voxel j over studies. Under this formulation,

i=1
the likelihood to be optimized is,

N

10) =1B,y) = Z [Y.jlog(it, ) — . j —log(Y, ;)] (2:6)
j=1

2.2.2. Negative Binomial model

While Poisson model is widely used in the regression of count data, it is recognized that counts
often display over-dispersion (the variance of the response variable substantially exceeds the
mean). Imposing a Poisson model based on the unrealistic assumption (variance equals mean) may
underestimate the standard error, and lead to biased estimation of the regression coefficients. While
Barndorff-Nielsen and Yeo (1969) proposed a formal definition of spatial Negative Binomial model,
it involves Gaussian processes and complexities we sought to avoid. Hence, here we do not propose
a formal point process model, but rather simply assert that the count data at each voxel follows a
Negative binomial (NB) distribution independently, thus allowing for anticipated excess variance
relative to Poisson (Lawless 1987).

Our NB model uses a single parameter « shared over all studies and all voxels to index variance
in excess of the Poisson model. For each study i and voxel j, let A;; follow a Gamma distribution
with mean ;; and variance & ,u% ; then conditioned on Aj;, let Yj; be Poisson with mean A ;. It can be
shown that the marginal distribution of Y;; follows a NB distribution with probability mass function,

C(yi + -1 1 o™ y Yij
P(Y; =) = — 25 T ) el W 27)
I‘(yij—{—l)F(a—l) 1+Olpbij 1+(X/Lij

In terms of the success count and probability parameterization, NB(r,p), we have Y ~

NB(a~ !, a,it_’zw), with mean E(Yj;) = p;; and variance V(Yj) = w;j + (x,u,izj. Details on the
i
derivation of the probability density function of the NB model can be found in S1.2 of the

Supplementary Material. When o > 0, we observe Poisson-excess variance of a/,LiZj; or analogous

to the coefficient of variation, the coefficient of excess variation is , /& u% /1ij = A/, which can be

interpreted roughly as the relative excess standard deviation relative to a Poisson model.

Again, the data vector is impractical to represent explicitly, but unlike Poisson, the sum of
multiple independent NB random variables doesn’t follow an NB distribution. Thus, we propose
a moment matching approach to approximate the mean (first moment) and variance (second
moment) of this convolution of NB distributions, which significantly facilitates the simplification

of the log-likelihood function. Matching the first two moments, the approximate NB distribution
M

of the total count of foci over all studies at voxel j is given by Y, ; = > Yij ~ NB(r]/-, p]/-) , where
i=1

LI
2 Z i
s M ,_ =
T pj= Mo
-1, .
oY u a i+ uE
i=1 i=1

with corresponding excess variance
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which gives rise to the simplified NB log-likelihood function,

10) ~ 1(B, ")

N
= [log I(Y,; + ) —log (¥, + 1) — log I'(r)) + r/log (1 — p)) + Y, ;log p]’.] (2.8)
j=1

Details on the derivations of the moment matching approach can be found in S1.3 in the
Supplementary Material. We have also included a simulation in Section S1.4 in the Supplementary
Material, which demonstrates the accuracy of this method in approximating the sum of NB
distributed variates. Our findings indicate a negligible bias (0.3098%) in the standard error
estimate for the mean estimate using the moment matching approach. Furthermore, the maximum
likelihood estimates (MLEs) for both methods are remarkably close to their true values.

2.2.3. Clustered Negative Binomial model

While the NB model can be regarded as a kind of “random effects” Poisson model, as developed
above, the latent Gamma random variable introduces independent variation at each voxel. Instead,
we could assert that the random (Gamma-distributed) effects are not independent voxel-wise ef-
fects, but rather latent characteristics of each study, representing a shared effect over the entire brain
for a given study. This is, in fact, the approach used by a Bayesian CBMA method (Samartsidis et al.
2019), and in a non-imaging setting, a Poisson-Gamma model for two-stage cluster sampling
(Geoffroy and Weerakkody 2001). Therefore, we now consider a third GLM, where at the first
stage, we assume each individual study i is sampled with a global latent value A; from a Gamma
distribution with mean 1 and variance o, which accommodates excess variance by the dispersion
parameter & (A; ~ Gamma(a !, a™1)). At the second stage, conditioned on the global variable A,
Yjj are drawn from a Poisson distribution with mean A;u;; (Y,-j|)»i ~ Poisson(kiuij)), where ;5 is
the expected intensity parameterized by spatial regression parameter 8 and covariates regression
parameter ). The marginal distribution of Yj; also follows an NB distribution,

-1

T'(y; + o D a1 o Wii Yij

P(Yy; =y;) = - J — < - _1> <— J _1> (2.9)
F()’zj+1)r(a ) Mij + o Hij +o

where Yj; ~ NB(a ™}, %) with mean E(Yj;) = u;; and variance V(Yj;) = w;; + ot,u,-zj. Details
i

on the derivation of the probability density function of the clustered NB model can be found in S1.5

in the Supplementary Material. This two-stage hierarchical Clustered NB model also introduces a

covariance structure between foci within a study, which is determined by the expected intensity of

the observations as well as the dispersion parameter « (see S1.6 in the Supplementary Material).

The covariance for studies i and 7, and distinct voxel j and j' s,

C(Yy5, Yy ) = apijugy, ifi =1

2.10
C(Y35, Yy p) =0, ifi £ (210)

The log-likelihood is the sum of terms over independent studies,

M
(B, y) =Y loglf(Yar, Y, -+, Yiny)]

i=1

M
=Ma 'log(e™) — Mlog (@™ ) + ) logI'(Y;. + o)

i=1
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- ZZlogY 1 — Z(Y +a” 1)10g(u,} +a7hH +ZZ jlogp (2.11)

i=1 j=1 i=1 j=1

N
where V;, = > Yj; is the sum of foci within study i. One limitation of this model, though, is
j=1
that it doesn’t admit a factorization and depends on the length-(MN) data vector (see S1.6 in
Supplementary Material).

While the intra-study dependence is well-motivated, the Clustered NB model depends on the
strong assumption that excess variance is captured by the global dispersion A;. If there is voxel-wise
independent excess variance, the previous NB model will be preferred; we assess this issue below
with real data evaluations.

2.2.4. Quasi-Poisson model

As an alternative to the NB model, Quasi-Poisson model also allows for over-dispersed count
data, and is a straightforward elaboration of the GLM. Instead of specifying a specific probability
distribution for count data, the Quasi-Poisson model only requires a mean model and a variance
function, V(Y,-j) = O (with @ > 1). While the variance-mean relationship is linear for the Quasi-
Poisson model, itis quadratic in the NB model. This results in small foci counts being weighted more
and can have greater adjustment effect in the Quasi-Poisson model, which theoretically might be
ideal for our scenario where most brain regions have zero or low foci counts (Ver Hoef and Boveng
2007).

Quasi-Poisson model can be framed as a GLM, with the mean and variance for voxel j in study i
given by,

E[Yy] =

(2.12)
Var(Y; ) = 0“1}
Without a likelihood function, we instead use ILRS algorithm, with the (k 4- 1)th iteration given

by,

2.13
y[k+1] _ "[k] + (Z*TW[]C]Z*) lZ*T(Y //L[k]) ( )

where W = dlag(“ll --,%,---,%,---,“0&), and X* =1 ® X, Z" =15y ® Z. This

model can be simplified as well, though we again defer that to Section 2.3.

2.3. Model factorization

Having derived the explicit log-likelihood functions for meta-regression with three stochastic
likelihood-based models, as well as the updating equation for a quasi-likelihood based model,
we now consider model factorization to replace the full (MN)-vector of foci counts by sufficient
statistics. Following the generic formulation of GLM proposed in Section 2.1.1,

Ny = 10g(M1;) = ZX]kﬁk + Z ZisYs- (2.14)

s=1

1;j is the estimated linear response from GLM, specific to each voxel j in each individual study i. In
our neuroimaging application, there are always at least 220, 000 voxels (), hundreds or thousands
of studies M, and ~500 or more basis elements (P = 456 for 20mm knots spacing), giving rise to
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millions of rows (MN) and billions of entries (MN x (P + R)) in a GLM formulation. Thus, we
propose a reformulation of this model into a series of sufficient statistics that are never larger than
M or N in dimension. First, note that the localized spatial effect 4% and global effect of study-level
covariates leZ for study i factorize p;; as

P R P R
= exp (z bt S z,-sys) _exp (2 x,-kﬂk) oxp (2 z,-sys) i s)
k=1 k=1

s=1 s=1

To further simplify the log-likelihood function, we also use the fact that Y;; < 1 (either 0 or 1), as
there will never be more than one foci at the same location in a given study. Define the following
notation:

« Let N-vector uX = exp(XB) be the vector of spatial effects;

o let M-vector u? = exp(Zy) be the vector of global study-level covariates effects;
« as already defined, Y, ; = % Yj; is sum of foci counts at voxel j across all studies, and define
the N-vector Y, = [Y, 1, 'l'z'l; YNl
o andlet Y;, = % Yi; be the sum of foci counts for study i across all voxels, and define the
j=1
M-vector Y, =] [Yy,.,---, YM,_]T.

The simplified factorization of total log-likelihood functions or IRLS updating equation are spe-
cific to each stochastic model. Full details are provided in S2 in the Supplementary Material; in
summary:

« Poisson model:
1(,) = Y] log(u®) + ¥ log(u?) — [T | [174?], (2.16)

o NBmodel: As described in Section 2.2.2, we approximate a sum of independent NB variables
again as a NB:

M
X, ,ZN\2
(M;X)Z[ITMZ]Z l;(ﬂ, M )

M
Y.,j =Y Y;j~NB(r,p)) = NB , m
= o Y (W udH? @) TR+ Y (W uf)?
i=1 i=1
(2.17)

s X Z
o Y ()’
with dispersion parameter o’ = —%*

W. The log-likelihood function is given by,
N
I, B, =Y [log I(Y,; + ) —log (Y, + 1) — log I'(+))
j=1

+ r; log (1 — p;-) +7Y.,; logp]/-], (2.18)
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o Clustered NB model:

M
I, B,y) =Ma 'log(a™") — MlogI'(@™ ") + Y "logN'(Y;. + ™)
= (2.19)

M
— Y (Vi + o Dlogle™ + ;) + Y. log(u®) + Y log(u?)
i=1

where dispersion parameter o measures the excess variance across all studies and all voxels,
« Quasi-Poisson model:

AU = gl 1 (xTwlilx) X7 (v, — (%)) (20)

X X z VA z
where W = diag(%, SRR MTN) andV = diag(l%l, “9—2, ceey ’%‘ﬂ_

2.4. Model optimization

For likelihood-based models (Poisson, NB, and clustered NB model; Section 2.2.1-Section 2.2.3)
without study-level covariates, we employ Fisher scoring for the iterative optimization of parameters
in GLMs. Fisher scoring replaces the gradient and Hessian of Newton’s method with the score
and observed Fisher’s information, respectively (Longford 1987). Writing 6 for all parameters, the
updating equation at the (k 4 1)th iteration is,

0
[k+1] _ plkl] [k])y—1 (k1)
0 =0 +1(6") PP 1(6") (2.21)
where the observed Fisher information is I(0!F) = E [— ; ; 5(90% ]ezelkl'

For the Poisson model, = [, v ], the Fisher information is given by,

9% 34U
apap T By "
16) =I(B,y) = [ ey } (2.22)
TayapT T ayayT
with negative Hessian matrix of S, (— 3 ﬂ‘(’; /;T)P » = X "diag(u¥)X; the negative cross term
X

T
L _(_ 321) v T X, 2T . . : ;
( —3ﬁ3VT)PxR_ 5,967 RXP—[X wrl(n?) ' Z]; and negative Hessian matrix of y,

- ayf’;;T) = 7T diag(u?)Z.

Likelihood-based models with study-level covariates lead to more complicated derivations of
updating equations via Fisher scoring. Instead, we use a more efficient quasi-Newton algorithm (the
L-BFGS algorithm, Shanno 1970), which minimizes smooth, nonlinear functions without directly
computing the Hessian matrix. Instead, it estimates the observed Fisher Information with gradient
evaluations, significantly reducing both memory requirements and computational complexity. It
is particularly well-suited for optimization problems characterized by a large number of variables,
where computing the full Hessian matrix would be computationally expensive or even infeasible
due to memory constraints.

Lastly, for Quasi-likelihood models (e.g. Quasi-Poisson model, see Section 2.2.4) where exact
likelihood functions are computationally infeasible, optimizing the regression coeflicients using
Fisher scoring becomes impractical. Instead, we employ the Iteratively Reweighted Least Squares
(IRLS) method to iteratively find the optimal regression coefficients. For the updating equations,
please refer to Section S2.4 in the Supplementary Material.
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2.5. Statistical inference
2.5.1. Global test of model fitness

Among the proposed stochastic models in Section 2.2, the Poisson, NB and clustered NB model
are likelihood-based, while Quasi-Poisson model is Quasi-likelihood based (its exact likelihood
is computationally infeasible). To compare the goodness of fit from a global perspective, we will
utilize likelihood-based comparison criteria (e.g. LRT and Akaike information criterion (AIC))
with likelihood-based models, as well as other global model fitness criteria across all stochastic
models within this meta-regression framework.

2.5.1.1. Likelihood-based model selection criteria

LRT uses the difference in log-likelihoods to test the null hypothesis that the true model is the
smaller nested model. Since the Poisson model is nested in both the NB model and the clustered
NB model with a dispersion parameter o = 0, for the null hypothesis Hy: dispersion parameter
o = 0, the likelihood-ratio test statistic is given by,

Ar = —2[100) — 1) ]

where 1(9) = I(&, ,é ,7) is the maximum log-likelihood of the NB model or clustered NB model
without any constraint on parameters, and ] (éo) =l(a =0, /§ ,7) is the maximum log-likelihood of
the NB model or clustered NB model with the dispersion parameter & constrained at 0 (i.e. Poisson
model). The test statistic is Chi-square distributed with 1 degree of freedom.

AIC is an alternative to LRT which also addresses the trade-off between the goodness of fit and
the simplicity of the model, and it addresses the overfitting problem by penalizing the number of
parameters in the model. To measure the goodness of fit of a model M on dataset D,

AIC = 2k — 21(0) (2.23)

where [ (é ) is the maximized log-likelihood function of the model M, k is the number of parameters
in model M. The model with the smaller AIC is believed to be a better fit to the dataset.

2.5.1.2. Bias and variance of estimation

For the purpose of selecting the best model in terms of goodness of fit across a variety of datasets, we
extend the model comparisons to include all stochastic models proposed in Section 2.2, including
the Quasi-Poisson model. As the central outcome of this meta-regression framework is voxel-wise
intensity estimation for each study, with the effect of study-level covariates being considered, it’s
natural to utilize bias and variance of intensity estimation as new criteria stated below,

« Relative bias of the estimated total sum of intensity (per study), comparing with the averaged
sum of foci counts (per study) across multiple datasets;

« Relative bias of standard deviation (SD) in each of x, y, z dimension, compared with the actual
standard deviation in foci count (per study) across multiple datasets;

« Relative bias of voxel-wise variance between the actual foci count (per study) and the intensity
estimation (per study).

Here, relative bias is evaluated instead of absolute bias, especially when applied to a variety of
datasets with diverse foci counts.

2.5.2. Localized inference with Wald tests on uf}( and né(

While our model is parameterized by P basis elements, users want to make inference at each of the N
vozxels. Hence, we provide localized inference on estimated spatial intensity ,uff (or nf}-( = log( /L?j( )

and the regression coefficient of study-level covariates () via Wald tests.
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2.5.2.1. Test of spatial homogeneity

In the CBMA context, the most basic inference is a test of homogeneity to identify regions
where more foci arise than would be expected if there were no spatial structure. Precisely, we
use the null hypothesis on voxelwise intensity estimation or estimated linear response, Hy : ,u,?]-( =

M N
Ho=>. > Y;j/(MN) or ni)f = 1o = log(to) at vozxel j, for study i. The standard error for 8 can
i=1j=1
be asymptotically estimated from the inverse of the observed Fisher Information matrix, which
gives rise to the standard error for the linear response nl?j( , and thus the standard error for ,u,fj( is
obtained via the delta method (see Section S2.5 in the Supplementary Material for details). It allows
inference via Wald tests by examining voxelwise intensity estimation against the null hypothesis of
homogeneity over space. The signed Wald statistic for ,u;?]-{ or 771?]-( takes the form:

X X
1 — Mo My — Mo
Zx=——n) Zyx = ——— (2.24)
SE(/Lij) SE(nij)

where SE( ,uff ) is the standard error of the estimated spatial intensity Mf]( ,and SE (nfj{ ) is the standard
error of the estimated linear response nfj( , and the statistics are asymptotically Gaussian. Finally,

we can create P-value maps that are thresholded to control the false discovery rate (FDR) at 5%
(Benjamini and Hochberg 1995).

2.5.3. Inference on study-level covariates

For the regression coefficient y (s X 1) of study-level covariates, we consider general linear hypoth-
esis (GLH) tests through a contrast matrix C;, (m X s). Under the null hypothesis,

Ho: Cyy = 0mx1 (2.25)

The test statistic follows a x? distribution with m degree of freedom asymptotically,

(Cy )T (CyCov(ICHH(C,yP) 2 X2 (2.26)

and in the case of a single contrast (m = 1), a signed Z test can be computed. Details of GLH on
study-level covariates can be found in S4.1 in the Supplementary Material.

3. EXPERIMENTS
3.1. Simulation settings

The statistical analyses of model estimation with CBMA data are conducted at the voxel level: vox-
elwise test statistics are evaluated to examine the significance of the experimental effect. Therefore,
before investigating model fitness, we evaluate our models’ false positive rates (FPR) under null
settings. Due to the computationally intensive nature of these evaluations, we only evaluated the
two models that showed promise in other evaluations, Poisson and NB. Under the null hypothesis of
spatial homogeneity, we use Monte Carlo (MC) simulation to establish the validity of FPR control
for the test of spatial intensity (u*). Specifically, we will explore meta-regression with either the
Poisson or NB model, with or without study-level covariates. To ensure the validity of FPR control
is applicable to all CBMA data, the sampling mechanism is either model-based or empirical, with
simulated foci count always analogous to the foci count within a real dataset. Specifically, in model-
based sampling, the data generating mechanism matches the regression model, with the number of
studies and average foci per study identical to the original dataset; while in empirical sampling,
real data foci locations are randomly shuffled to guarantee the spatial homogeneity of the foci
distribution.
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Table 1. Number of contrasts and foci counts of 20 meta-analytic datasets.

Dataset Number of contrasts Total count of foci Max foci count Average foci count
1. Social processing 599 4934 47 8.24
2.PTSD 22 154 26 7.00
3. Substance use 89 657 110 7.38
4. Dementia 28 1194 548 42.64
S. Cue reactivity 275 3197 58 11.63
6. Emotion regulation 338 3543 87 1048
7. Decision making 145 1225 49 8.45S
8. Reward 850 6791 59 7.99
9. Sleep deprivation 44 454 59 10.32
10. Naturalistic 122 1220 59 10.00
11. Problem solving 282 3043 44 10.79
12. Emotion 1738 22038 203 12.68
13. Cannabis use 81 314 16 3.88
14. Nicotine use 13 77 23 5.92
1S. Frontal pole CBP 795 9525 57 11.98
16. Face perception 385 2920 S0 7.58
17. Nicotine administration 75 349 24 4.65
18. Executive function 243 2629 54 10.82
19. Finger tapping 76 696 27 9.16
20. n-Back 29 640 69 22.07

3.2. Applications to 20 meta-analytic datasets

Cognition concerns psychological and cognitive processes that focus on learning people’s percep-
tion, interpretation and response to information and stimuli. It refers to both conscious procedure
and unconscious, automatic mechanisms in the brain that occur as a response to stimuli, and is
highly variable across individuals (Gallagher et al. 2019). Cognition has been studied intensively
to identify brain regions involved in cognition tasks, conducted in an MRI scanner. Here we
use 20 previously published meta-analytic datasets for the purpose of evaluating the accuracy
and sensitivity of this meta-regression framework, as well as analyzing the goodness of fit of
stochastic models with respect to different CBMA datasets. These datasets involve multiple aspects
of cognition research, as listed in Table 1.

The preprocessing steps are summarized in Fig. 2. The discrete sampling space of our analysis
is the 2mm3 MNI (Montreal Neurogical Institute) atlas (Collins et al. 1994), with dimensions
91 x 109 x 91,and N = 228, 483 brain voxels. We first apply this brain mask to remove foci outside
the brain and remove any multiple-foci (while original data peaks are always distinct, a foci count
in excess of 1 can occur when Talairach coordinates are rounded to the MNI 2mm grid). We then
extractall the sufficient statistics after model factorization in Section 2.3, including the spatial design
matrix X (N X P) generated from B-spline bases, total foci count per voxel Y, (N x 1) and total foci
count per study Y, (M x 1) and study-level covariates Z(M x R) if considered.

4. RESULTS
4.1. Simulation results

For each of the 20 meta-analytic datasets, we simulate foci distribution under a null hypothesis
of spatial homogeneity, estimate spatial intensity and investigate the distribution of voxel-wise
P-values for the eight different scenarios: fitting Poisson or NB model, using a model-based or
empirical (random shuffling) data sampling mechanism, and including or omitting study-level
covariates. For all settings, we use a B-spline knot spacing of 20mm in «, y, z direction, producing
P = 456 basis elements. The computation of test statistics depends on the covariance of regression
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bases, with equally spaced knots
spacing=20mm

B
total foci count per voxel (N x 1)
M
Let ¥, be the foci Y=Y
Apply brain mask to Convert foci coordinates b v‘m‘e", gl J?:';::;: =
remove coordinaltes ——» from (x,y.z) toindex — St | el total foci i tudy (M x 1
oulside of brain between 1 and IV ’Y';r: (1) :tt::rr:i:JMI e cou pe}rvs ¥ )
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Figure 2. Preprocessing pipeline of meta-analytic datasets before fitting coordinate-based meta-regression
(CBMR) framework. Note that panel A and B are applicable to all datasets, which generate a spatial
design matrix X, total foci count per voxel Y, (N x 1) and total foci count per study Y, (M x 1). Panel C
is only needed if the effect of study-level covariates is considered, as covariates matrix Z (M x R).

coefficients, which is approximated by the inverse of the Fisher Information matrix of optimized
parameters at maximized log-likelihood (see Section 2.4). Empirically, we sometimes found the
P-values are underestimated, particularly below the threshold of 1073, which we believe has two
causes. Firstly, the inference based on the inverse Fisher Information (FI) matrix is only asymptotic,
and hence under- or over-coverage could be obtained for any finite number of studies N. Secondly,
small meta-analyses with some regions having essentially no foci drive some of the 8 coefficients
to negative infinity, producing an estimated rate of zero, which in turn produces an ill-conditioned
and singular FI matrix. (In our experiments, we observed that datasets with a total foci count of
at least 1000 generally avoided these singularity problems and produced accurate standard errors
for NB model, however, this criterion also depends on the chosen spline knot spacings (we also
provide a practical guideline of choosing appropriate knot spacings based on the total foci counts
in Section S4.1 in the Supplementary Material). We tried various different approaches to regularize
and make the FI matrix invertible but these often deflated the computed sample variances, inflating
significance, and hence are not part of the proposed method.

To establish the validity of spatial homogeneity tests (/L}X = o, Vj=1,--+,N) for each of
the 20 meta-analytic datasets, we compute P-values and create P-P plots. We compute 100 null
realizations, each producing N P-values (one for each voxel), with the null expected —log,,
P-values ranging from —log;,(N/(N + 1)) ~ 0 to —log,,(1/(N + 1)) = 5.359. To avoid the
overplotting of 100 curves on the — log,, P—P plots, for each ordered P-value index on the abscissa
we compute the average and standard deviation (SD) of the 100 corresponding — log;, P-values,
plotting the mean and confidence bounds at +1.96 SD. We rejected the null hypothesis of spatial
homogeneity at a 5% significance level, and calculated the percentage of rejected voxels out of the
228, 483 voxels located within the brain. Since the P-P plots are very similar for each of the eight
scenarios, we only display the results for the setting of CBMR with an NB model without study-level
covariates, sampled with a model-based approach. Figure 3 shows the four representative —log,
P-P plots (results for all 20 studies shown in Figure S11 in the Supplementary material), with
identity (dashed diagonal line), 5% significance (dashed horizontal line) and the FDR 5% boundary
(solid diagonal line); gray shaded areas plot the point-wise 95% prediction intervals. It shows that
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Figure 3. P-P plot of null P-values, — log,, scale, showing four representative meta-analytic datasets
(Social Processing, Substance Use, Cannabis Use and PTSD datasets), estimated by CBMR with NB
model without study-level covariates, with null data generated with a model-based approach. CBMR’s
P-values are generally valid for P < 0.001, especially for studies with 1000’ of foci.

P-values < 0.05 &~ 10~ 13 are valid, and extreme P-values can skew liberal; the worst affected cases
are datasets with very few foci (e.g. analysis 14). In general, datasets with total foci counts less than
1000 show poor behavior.

Since multiple testing correction requires valid P-values far smaller than 0.05, we focus on
controlling the FDR in these null simulations. None of the 20 datasets have valid FDR control
(PP-plots or prediction intervals fall above the 5% Benjamini-Hochberg threshold). However,
the PP plots generally show valid P-values < 103, and if we truncate P-values by replacing any
P-value smaller than 103 with that value, we obtain valid (if conservative) FDR control (Table 2).
This pragmatic approach could impact power, but empirical results (Section 4.2) suggest that the
inferences based on truncated P-values remain sensitive.

4.2. Results from 20 meta-analytic datasets

We first evaluate the goodness of fit among likelihood-based stochastic models (Poisson, NB
and clustered NB model) via comparisons of maximized log-likelihood and AIC. As shown in

202 AINF G1 U0 158NnB Aq 8/EE |/ /7Z09EXM/SONSIEISOIA/E60 | "0 |/I0P/3[0E-80UBADE/SONSIEISOIq/W 00" dNo"0lWSpeo.//:SAY WO, PaPEo|uMoQ



16 - Yuetal

Table 2. The percentage of invalid FDR control (before/after P-value truncated at 1073) in 20
meta-analytic datasets over 100 realizations.

Dataset Before After Dataset Before After
1. Social processing 44% 0% 2.PTSD 100% 0%
3. Substance use 26% 0% 4. Dementia 16% 0%
S. Cue reactivity 28% 0% 6. Emotion regulation 23% 0%
7. Decision making 18% 0% 8. Reward 43% 0%
9. Sleep deprivation 30% 0% 10. Naturalistic 22% 0%
11. Problem solving 26% 0% 12. Emotion 100% 0%
13. Cannabis use 63% 0% 14. Nicotine use 94% 0%
15. Frontal pole CBP 90% 0% 16. Face perception 19% 0%
17. Nicotine administration 54% 0% 18. Executive function 22% 0%
19. Finger tapping 22% 0% 20. n-Back 27% 0%

Figures S12 and S13 in S4.3 of the Supplementary Material, CBMR with the NB model outperforms
the other two likelihood-based stochastic models in every dataset. This is not surprising as the NB
model is the only likelihood-based model that allows for the anticipated excess variance relative to
Poisson at the voxel level; clustered NB is better than Poisson for the majority of these 20 meta-
analytic datasets, but only by a small margin. It is conceivable that although a study-wise global
dispersion parameter exists in the clustered NB model, CBMA data is just as well specified by a
Poisson model at the voxel level. LRT comparison of nested models rejects the null Poisson model
vs. NB for all datasets, with P-value less than 10™8; the Poisson null is rejected in favor of the
clustered NB model for the majority of the 20 meta-analytic datasets (with P-value less than 10~%)
(see Table S13 in Appendix S4.3 of the Supplementary Material).
For all methods we also use three metrics to assess model fit:

+ Relative Absolute Bias of Intensity Sum: This metric compares the sum of CBMR estimated
intensity over the space to the total number of observed foci counts within the dataset.

+ Relative Absolute Bias of Intensity Standard Deviation (SD) in the , y, z directions: This
metric evaluates the SD of CBMR intensity estimation compared to the empirical distribution
of foci counts in the dataset in all three directions.

« Relative Absolute Bias of Variance at the voxel-wise level: This metric measures the dis-
crepancy between the asymptotic variance of the fitted CBMR model and empirical variance
of foci counts in the dataset, calculated at each voxel and averaged over voxels with at least one
foci.

These metrics were calculated for each of the 20 datasets and are presented using boxplots to
illustrate the variability and distribution of the results.

Plots in Fig. 4a suggest that the four evaluated stochastic models (Poisson, NB, clustered NB
and Quasi-Poisson model) produce consistently accurate estimates, with the median relative bias
of estimated study-wise total foci count less than 1.0%, among which the Poisson model has the
lowest median relative absolute bias (0.05%), across 20 meta-analytic datasets. However, all four
stochastic models tend to slightly overestimate the study-wise total foci counts in these datasets.
The Quasi-Poisson, in particular, shows a more variable relative absolute bias across the 20 datasets.
The results in Fig. 4b suggest that the CBMR framework also provides an accurate estimation of
standard variation (SD) of intensity across the x, y, z dimensions. The relative bias is controlled
below 0.25% for all stochastic models in 20 meta-analytic datasets, and estimated intensity along
the x axis are the most accurate (with the smallest SD bias). As shown in Fig. 4c, CBMR with
the Poisson model and clustered NB model display a negative bias in variance which suggests that
excess variance cannot be explained by the Poisson assumption. The study-specific over-dispersion
modeled by the clustered NB is insufficient, as this model also has negative bias. Small relative bias
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Figure 4. Results from bias-related model comparison criteria, fitted with four stochastic models on each
of 20 meta-analytic datasets: (a) boxplot of relative absolute bias of estimated intensity sum (per study);

(b) boxplot of relative absolute bias of estimated intensity SD in x,y,z directions (per study); (c) boxplot

of relative absolute bias of voxelwise estimated intensity variance (per study).

is found in both NB and Quasi-Poisson model (with median 0.78% and 1.25%), with less variation
in relative bias across multiple datasets with the NB model, which suggests both models are capable
of dealing with excess variance in CBMA data.

Overall, we regard these evaluations as evidence that NB model is preferred. While it has slightly
more bias in the study-wise total foci counts (Fig. 4a), its variance estimation is considerably more
precise compared to the Poisson model (Fig. 4c).

4.3. Comparison with ALE

Activation likelihood estimation (ALE) is one of the widely used kernel-based CBMA methods. For
each focus, ALE creates a map with a Gaussian kernel centred at the location, and then combines
pairs of maps using the probability of a union of events rule (P(A U B) = P(A) + P(B) — P(AN
B)) at each voxel (Turkeltaub et al. 2002). It appears to model the probability that one or more foci
arise at a given voxel, conditional on the total number of foci over all studies.
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Figure S. Activation maps (for significant uncorrected P-values, P < 5%, displayed as Z-scores) generated
by ALE (with FWHM=14) and CBMR (with NB model) on the Cue Reactivity dataset with axial slices at
z = —24,—12,0, 12,24, 36, 48. Both methods identify similar regions for significant evidence against the
null of spatial homogeneity. While ALE finds more significant voxels, it represents a fixed-effects type of
analysis not directly comparable with CBMR inferences (see text). (a) Z-score map generated by ALE.
(b) Z-score map generated by CBMR (with NB model).

We compared our CBMR results to ALE, conducting tests for spatial homogeneity across space
with both approaches. For simplicity, we only demonstrate the comparison of detected activation
regions on the Cue Reactivity dataset (total foci count of 6288) (Hill-Bowen et al. 2021), and only
the z-value map generated by the CBMR with the NB model is presented here as a representative
example. For comparison purposes, we show z-statistic values at all voxels significant at o = 0.05
uncorrected in Fig. 5. Here, we choose FWHM=14 to obtain comparative spatial resolution between
ALE and CBMR. Evidence for consistent activation is found in the left cerebral cortex, frontal
orbital cortex, insular cortex, left and right accumbens, with exact activation regions differing
slightly between ALE and CBMR, and ALE detecting more voxels.

Another criterion of consistency is the Dice Similarity Coefficient (DSC), the intersection of
ALE and CMBR significant voxels divided by the average number of significant voxels. As shown in
Table 3, ALE appears generally more sensitive than CBMR, regardless of foci counts in the datasets,
though DSC varies from 71.89% to 80.33% on the datasets with more than 1200 foci counts, which
demonstrates good similarity between the methods.

ALE evaluates the experimental effect by testing probabilistic maps (generated by a Gaussian
kernel) against the null hypothesis, CBMR estimates activation intensity and conducts hypothesis
testing at the voxel level.

Some researchers have proposed a stringent threshold (¢ = 0.0001) on uncorrected P-values to
reduce type I error (Turkeltaub et al. 2002), while a more principled approach is to control the false
discovery rate (FDR) via Benjamini-Hochberg (BH) procedure. Figure 6 shows a comparison of
results using a 5% FDR threshold, where CMBR (NB) P-values use a 102 truncation, and Table 4
shows a comparison of the number of detected voxels.

It is seen that CBMR generally detects fewer voxels than ALE (Table 4), however these two ap-
proaches are not directly comparable. In previous work (Samartsidis et al. 2017) it’s demonstrated
that ALE behaves like a fixed-effect model, where significance can be driven by a tiny fraction of
“real” studies mixed with purely noise studies. In contrast, with our model, heterogeneity can be
captured by the NB excess variance term and make inferences more sceptical. As a result, direct
comparisons of sensitivity seem akin to comparing the power of a fixed effects model (that neglects
an important source of variation) to a mixed effects model, where the fixed effects model will always
be more powerful by design. We also add that CBMR is grounded in a generative statistical model,
accommodates study-level covariates and produces standard errors on interpretable parameters.
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Table 3. Number of voxels in activation regions of ALE (FWHM=14) and CBMR (with the NB model),
based on uncorrected P-values with 5% significance level, as well as Dice similarity coefficient in 20
meta-analytic datasets (Datasets are listed in an ascending order according to total number of foci).
Dataset n_foci |ARCBMR| |ARA1E| |ARcBMR N ARJLE| DSC
14. Nicotine use 77 1312 12431 1154 17.79%
2. PTSD 154 6306 15866 5067 45.71%
13. Cannabis use 314 11841 18390 8235 54.48%
17. Nicotine administration 349 11546 18916 8028 52.71%
9. Sleep deprivation 454 10250 15461 5732 44.59%
20. n-Back 640 19404 31512 17627 69.24%
3. Substance use 657 19024 26477 13602 59.79%
19. Finger tapping 696 19067 33914 17939 67.72%
4. Dementia 1194 16244 30437 12464 53.41%
10. Naturalistic 1220 22328 29442 15344 59.28%
7. Decision making 1225 28284 36735 23372 71.89%
12. Emotion 2038 57698 67699 48847 77.91%
18. Executive function 2629 33848 46679 31698 78.73%
16. Face perception 2920 41682 53109 36710 7745%
11. Problem solving 3043 38466 S1315 34757 7743%
S. Cue reactivity 3197 41242 52371 37301 79.69%
6. Emotion regulation 3543 36602 48157 31176 73.56%
1. Social processing 4934 48376 61136 40740 74.40%
15. Frontal pole CBP 9525 53165 65339 47595 80.33%
8. Reward 6791 43048 51721 37711 79.59%
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Figure 6. Activation maps (for significant FDR corrected P-values under 5% significance level, presented
in Z-scores) generated by ALE and CBMR with FDR correction (by BH procedure) with truncated
P-values of Cue Reactivity dataset. The figure is shown with axial slices at z = —24, —12, 0, 12,24, 36, 48.
Under the null hypothesis of spatial homogeneity, activation regions with z-scores corresponding to
corrected P-values below the significance level 0.05 are highlighted. (a) Z-score map generated by ALE.
(b) Z-score generated by CBMR (with NB model).

Instead of relative power, our goal here is to demonstrate that the detected activation regions
produced by both methods are roughly consistent. For this purpose, we found that the DSC varies
between 70.55% and 79.76% for datasets with more than 1225 foci counts, indicating consistency
of activation regions between ALE and CBMR approach after FDR correction.
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Table 4. Number of voxels in activation regions of ALE (FWHM=14) and CBMR (with the NB model),
based on FDR corrected P-values (using BH procedure) with 5% significance level, as well as Dice
similarity coefficient in 20 meta-analytic datasets (Datasets are listed in an ascending order according to
total number of foci). Roughly, datasets with at least 1000 foci show reasonable similarity between ALE
and CBMR.

Dataset Il_fOCi |ARcBMR]| |ARALE| |ARcBMR N ARALE| DSC

14. Nicotine use 77 209 0 0 0.00%
2. PTSD 154 0 1201 0 0.00%
13. Cannabis use 314 313 152 17 7.31%
17. Nicotine administration 349 1338 943 522 45.77%
9. Sleep deprivation 454 176 0 0 0.00%
20. n-Back 640 11456 17725 10212 69.99%
3. Substance use 657 3145 2082 1225 46.87%
19. Finger tapping 696 12410 23837 11590 63.95%
4. Dementia 1194 5126 7931 3142 48.13%
10. Naturalistic 1220 4192 3241 1861 50.07%
7. Decision making 1225 15331 20468 12628 70.55%
18. Executive function 2629 26039 37797 24690 77.67%
16. Face perception 2920 28893 38193 25533 76.12%
11. Problem solving 3043 28221 39091 25675 76.29%
S. Cue reactivity 3197 30382 38847 27375 78.57%
6. Emotion regulation 3543 23388 31620 20056 72.92%
1. Social processing 4943 34317 45263 28555 71.76%
8. Reward 6791 33021 39743 28728 78.96%
15. Frontal pole CBP 9525 44030 55251 39594 79.76%
12. Emotion 22038 50480 57321 41918 77.77%

4.4. Effect of study-level covariates

Here we demonstrate how CBMR, unlike ALE, can estimate the effect of study-level covariates. We
integrate two study-level covariates, study-wise (square root) sample size and year of publication
(after centring and standardisation) into the CBMR framework on each of the 20 meta-analytic
datasets. We find, for example, on Cue Reactivity dataset, the year of publication is not significant
(Z = —0.6880, p = 0.4915), while sample size is significant (Z = 6.1454, p < 10~%); interpreting
the y parameter for sample size finds that a doubling of sample size results in an expected 26.15%
increase in the study-wise spatial intensity (see Table S14 for P-values and Z-scores of study-level
covariates on each of the 20 meta-analytic datasets).

S. DISCUSSION

In this work we have presented a meta-regression framework with a spatial model as a general
approach for CBMA data, where we have considered multiple stochastic models and allowed
for study-level covariates (e.g. sample size and year of publication). Our approach uses spline
parameterization to model the smooth spatial distribution of activation foci, and fits a generalized
linear model with different variants of voxelwise (Poisson model, NB model and Quasi-Poisson
model) or study-wise (Clustered NB model) statistical distributions. Our approach is a computa-
tionally efficient alternative to previous Bayesian spatial regression models, providing the flexibility
and interpretability of a regression model while jointly modeling all of space. For comparison, using
the Cue Reactivity dataset as an example, the implementation of Bayesian log-Gaussian Cox process
regression required approximately 30 hours on an NVIDIA Tesla K20c GPU card Samartsidis et al.
(2019), in contrast to approximately 537.52 seconds (about 9 minutes) required for CBMR with
the NB model on an Intel Xeon Gold 6340R CPU. Furthermore, grounded in a generalized linear
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model, we believe that our meta-regression framework is more comprehensible to practitioners,
relative to inference on the spatial posterior intensity function.

Through simulations on synthetic data (with simulated foci counts analogous to those in each
of 20 meta-analytic datasets), we demonstrated valid FDR control for the spatial homogeneity null
hypothesis after a truncation of P-values below 1073. According to 20 meta-analytic datasets, we
found that the NB model is the most accurate stochastic model in model comparisons via LRT and
AIC, as well as having the smallest relative bias in both mean and variance of intensity estimation
(per study), while the Poisson and clustered NB model cannot explain the over-dispersion observed
in foci counts. Meanwhile, we also compared the findings of activation regions from both the ALE
and CBMR approach, and justified the validity and robustness of CBMR, especially on the datasets
with relatively high foci counts, e.g. datasets with at least 1000 total foci.

There are a few limitations in our work. Here we have only considered a single group of
studies. In future work, we plan to extend our method to estimate the spatial intensity function
of multiple groups (e.g. multiple types of stimuli within a cognitive task), so that we can investigate
the consistency and difference in activation regions through group comparison. Additionally, our
current analysis is limited to the global effects of study-level covariates, a pragmatic decision given
common application with 10’s-100’s of studies. We recognize, however, that this approach might
not be appropriate in cases where there are significant spatial variations in covariate effects. Ideally
we would add a basis function to express each covariate effect, though this would likely be infeasible
without many 1000’s of studies. Alternatively we could use a coarse parcellation (e.g. 3-6 regions)
and allow parcel-specific regression coeflicients for each region.

We are currently not using regularization term on spatial regression coefficients of CBMR. Ini-
tially we considered a Firth-type penalty which indeed guarantees convergent estimates (especially
in brain regions without any foci) and removes the first-order asymptotic bias term of maximum
likelihood estimates, but we found it also causes significant overestimation of intensity at the edge
of brain mask. The edge effect induced by Firth-type penalty relates to the structure of the Jeffreys
prior and higher variance associated with edge and corner basis elements. However, it’s plausible
to consider regularizing likelihood functions with alternative penalty terms (e.g. L1 or L, norm)
in the future, though requiring hyper-parameter tuning. We estimate the variance of voxel-wise
spatial intensity using the covariance of spatial regression coeflicients found by inverting the Fisher
Information matrix. This can be numerically unstable because the dimension of Fisher Information
matrix is large (there are hundreds or even thousands elements in spline bases), and it might
even be numerically singular for datasets with low foci counts since most voxels have near-zero
intensity estimation. We have tried many approaches to improve numerical stability, including
adding an extremely small epsilon (107%) or 1% of the largest diagonal element on the diagonal of
the Fisher Information matrix, or computing the Fisher Information assuming the null hypothesis
of homogeneity is true. However, all of these efforts produced underestimation of the variance of
voxel-wise spatial intensity and led to invalid P-values. In future work, we might consider non-
parametric methods to estimate the covariance of spatial regression coeflicient instead of the inverse
of Fisher Information, or add a regularization term on B-spline roughness to avoid very negative
spatial regression coefficients.

Another important direction is a combined IBMA-CBMA analysis, were we extend our model to
include continuous effect size maps. One possible approach is to combine separate coordinate and
intensity models using Markov melding in a fully Bayesian framework for joining probabilistic sub-
models. In this approach, evidence from each different source is specified in each sub-model, and
the sub-models are joined while preserving all information and uncertainty (Goudie et al. 2019).
Such an approach might enrich the inference obtained from CBMR by integrating the magnitude
of CBMA activation or even image-based meta-analysis data.

Another direction of interest is investigating the variability caused by different meta-analysis
pipelines. This consideration is important, as we have observed significant variation in activation
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regions due to the different sensitivity in analysis pipelines in each study. In fact, the CBMR's study-
level covariates already allow it to accommodate variations in analysis pipelines by including the
specific pipeline used as a study-level covariates and understanding its impact at a global level.

Finally, another direction to consider is a zero-inflated stochastic model (e.g. Poisson or NB
model) as the current datasets only consist of studies with at least one focus, there might be inflated
zero foci count than observed. Excess zeros are separated and modeled independently in zero-
inflated models, which might provide a more accurate approximation for low-rate Binomial data,
as was found useful when modeling image-wise total foci counts (Samartsidis et al. 2020).

ACKNOWLEDGMENTS

The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or
the Department of Health.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Biostatistics Journal online.

FUNDING

This work was supported by the National Institutes of Health (NIH) under Award Numbers
H6R00550_CS00.01. The computational aspects of this research were supported by the Wellcome
Trust Core Award Grant Number 203141/Z/16/Z and the NIHR Oxford BRC.

CONFLICT OF INTEREST STATEMENT

None declared.

DATA AVAILABILITY

Implementation in the form of Python and Pytorch code can be found in Github repository. CBMR
framework has also been implemented and integrated into NIMARE python package

REFERENCES

BARNDORFF-NIELSEN O, YEO GF. Negative binomial processes. ] Appl Probab. 1969:6(3):633-647.

BenjaMINI Y, HOCHBERG Y. Controlling the false discovery rate: a practical and powerful approach to multiple
testing. J R Stat Soc Ser B (Methodol). 1995:57(1):289-300.

Corrins DL, NEeLIN P, PETERs TM, Evans AC. Automatic 3d intersubject registration of mr volumetric data
in standardized talairach space. ] Comput Assisted Tomography. 1994:18(2):192-205.

EickHOFF SB, BzDOK D, LAIRD AR, KURTH F, Fox PT. Activation likelihood estimation meta-analysis revisited.
Neuroimage. 2012:59(3):2349-2361.

E1sENBERG HB, GEOGHAGEN RRM, WaLsH JE. A general use of the poisson approximation for binomial events,
with application to bacterial endocarditis data. Biometrics. 1966:74-82.

GALLAGHER A, BuLTEAU C, COHEN D, MICcHAUD JL. Neurocognitive development: normative development.
Elsevier; 2019.

GEOFFROY P, WEERAKKODY GOVINDA. A poisson-gamma model for two-stage cluster sampling data. J Stat
Comput Simul. 2001:68(2):161-172.

GoupIk RJB, PREsaNis AM, LuNN D, DE ANGELIS, D, WERNIsCH L. Joining and splitting models with markov
melding. Bayesian Anal. 2019:14(1):81.

HirL-BoweN LD, RiepEL MC, PouDpEL R, SaLo T, FLANNERY JS, CAMILLERI JA, EICKHOFF SB, LAIRD AR,
SUTHERLAND MT. The cue-reactivity paradigm: an ensemble of networks driving attention and cognition
when viewing drug and natural reward-related stimuli. Neurosci Biobehav Rev. 2021:130:201-213.

KaNG J, JounsoN TD, NicHoLs TE, WAGER TD. Meta analysis of functional neuroimaging data via bayesian
spatial point processes. ] Am Stat Assoc. 2011:106(493):124-134.

Kang J, NicHoLs TE, WAGER TD, JounsoN TD. A bayesian hierarchical spatial point process model for
multi-type neuroimaging meta-analysis. Ann Appl Stat. 2014:8(3):1800.

LAIRD AR, LANCASTER JJ, Fox PT. Brainmap. Neuroinformatics. 2005:3(1):65-77.

202 AINF G1 U0 158NnB Aq 8/EE |/ /7Z09EXM/SONSIEISOIA/E60 | "0 |/I0P/3[0E-80UBADE/SONSIEISOIq/W 00" dNo"0lWSpeo.//:SAY WO, PaPEo|uMoQ


https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxae024#supplementary-data
https://github.com/yifan0330/CBMR
https://nimare.readthedocs.io/en/latest/index.html

Biostatistics, 2024,00,0 - 23

Lawziess JF. Negative binomial and mixed poisson regression. Can J Stat La Revue Canadienne de Statistique.
1987:209-228.

LoNGFORD NT. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with
nested random effects. Biometrika. 1987:74(4):817-827.

MONTAGNA S, WAGER T, BARRETT LF, JouNsoN TD, NicHoLs TE. Spatial bayesian latent factor regression
modeling of coordinate-based meta-analysis data. Biometrics. 2018:74(1):342-353.

Rapua J, Maraix-CoLs D, PriLLips ML, EL-HAGE W, KRoNHAUS DM, CARDONER N, SURGULADZE S. A
new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical
parametric maps. Eur Psychiatry. 2012:27(8):605-611.

SALIMI-KHORSHIDI G, SMITH SM, KELTNER JR, WAGER TD, NicHOLS TE. Meta-analysis of neuroimaging data:
a comparison of image-based and coordinate-based pooling of studies. Neuroimage. 2009:45(3):810-823.

SAMARTSIDIS P, EICKHOFF CR, EICKHOFF SB, WAGER TD, BARRETT LF, ATZIL S, JoHNSON TD, NicHoLs TE.
Bayesian log-gaussian cox process regression: with applications to meta-analysis of neuroimaging working
memory studies. ] R Stat Soc Ser C Appl Stat. 2019:68(1):217.

SAMARTSIDIS P, MONTAGNA S, LAIRD AR, Fox PT, JounsoN TD, NicaoLs TE. Estimating the prevalence of
missing experiments in a neuroimaging meta-analysis. Res Synth Methods. 2020:11(6):866-883.

SAMARTSIDIS P, MONTAGNA S, NicHOLS TE, JoHNSON TD. The coordinate-based meta-analysis of neuroimag-
ing data. Stat Sci Rev ] Institute Math Stat. 2017:32(4):580.

SaanNo DF. Conditioning of quasi-newton methods for function minimization. Math Comput.
1970:24(111):647-656.

TurkeLTAUB PE, EDEN GF, JoNEs KM, ZEFFIRO TA. Meta-analysis of the functional neuroanatomy of single-
word reading: method and validation. Neuroimage. 2002:16(3):765-780.

VER HOEF JM, BOVENG PL. Quasi-poisson vs. negative binomial regression: how should we model overdispersed
count data? Ecology. 2007:88(11):2766-2772.

WagGeR TD, LinpQuisT M, KaPLAN L. Meta-analysis of functional neuroimaging data: current and future
directions. Soc Cognit Affect Neurosci. 2007:2(2):150-158.

WESTEALL PH, YOUNG SS. Resampling-based multiple testing: Examples and methods for P-value adjustment, Vol.
279. John Wiley & Sons; 1993.

YarkonI T, PoLprack RA, NicaoLs TE, VAN EssEN DC, WAGER TD. Large-scale automated synthesis of
human functional neuroimaging data. Nat Methods. 2011:8(8):665-670.

Yue YR, LINDQUIST MA, LoH JM. Meta-analysis of functional neuroimaging data using bayesian nonparametric
binary regression. Ann Appl Stat. 2012:697-718.

202 AINF G1 U0 158NnB Aq 8/EE |/ /7Z09EXM/SONSIEISOIA/E60 | "0 |/I0P/3[0E-80UBADE/SONSIEISOIq/W 00" dNo"0lWSpeo.//:SAY WO, PaPEo|uMoQ



